Structured Parseval frames in Hilbert C*-modules

被引:0
|
作者
Jing, Wu [1 ]
Han, Deguang [1 ]
Mohapatra, Ram N. [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
来源
OPERATOR THEORY, OPERATOR ALGEBRAS, AND APPLICATIONS | 2006年 / 414卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the structured frames for Hilbert C*-modules. In the case that the underlying C*-algebra is a commutative W*-algebra, we prove that the set of the Parseval frame generators for a unitary operator group can be parameterized by the set of all the unitary operators in the double commutant of the group. Similar result holds for the set of all the general frame generators where the unitary operators are replaced by invertible and adjointable operators. Consequently, the set of all the Parseval frame generators is path-connected. We also obtain the existence and uniqueness results for the best Parseval multi-frame approximations for multi-frame generators of unitary operator groups on Hilbert C*-modules when the underlying C*-algebra is commutative.
引用
收藏
页码:275 / 287
页数:13
相关论文
共 50 条
  • [41] Controlled continuous ∗-g-frames in Hilbert C∗-modules
    Ghiati, M'hamed
    Rossafi, Mohamed
    Mouniane, Mohammed
    Labrigui, Hatim
    Touri, Abdeslam
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (01)
  • [42] EQUIVALENT CONTINUOUS G-FRAMES IN HILBERT C*-MODULES
    Nazari, A.
    Rashidi-Kouchi, M.
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 4 (04): : 91 - 98
  • [43] WEAK FRAMES IN HILBERT C*-MODULES WITH APPLICATION IN GABOR ANALYSIS
    Bakic, Damir
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (04): : 1017 - 1075
  • [44] On frames in Hilbert modules over pro-C*-algebras
    Joita, Maria
    TOPOLOGY AND ITS APPLICATIONS, 2008, 156 (01) : 83 - 92
  • [45] NEW INEQUALITIES FOR G-FRAMES IN HILBERT C*-MODULES
    Xiang, Zhong-Qi
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (03): : 889 - 897
  • [46] Perturbation and Stability of Continuous Operator Frames in Hilbert C*-Modules
    Touri, Abdeslam
    Labrigui, Hatim
    Rossafi, Mohamed
    Kabbaj, Samir
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [47] A New Characterization on g-frames in Hilbert C;-Modules
    Xiang Zhong-qi
    Communications in Mathematical Research, 2017, 33 (02) : 129 - 134
  • [48] Near continuous g-frames for Hilbert C*-modules
    Khatib, Y.
    Hassani, M.
    Amyari, M.
    JOURNAL OF MATHEMATICAL EXTENSION, 2019, 13 (04) : 131 - 142
  • [49] K - g-FUSION FRAMES IN HILBERT C*-MODULES
    Nhari, Fakhr-Dine
    Echarghaoui, Rachid
    Rossafi, Mohamed
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2021, 19 (06): : 836 - 857
  • [50] A note on the stability of g-frames in Hilbert C*-modules
    Xiang, Zhong-Qi
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (04)