Preparation of Photoluminescent Porous Silicon Nanoparticles by High-Pressure Microfluidization

被引:13
|
作者
Roberts, David S. [1 ]
Estrada, Daniel [2 ]
Yagi, Nobuhiro [3 ]
Anglin, Emily J. [1 ]
Chan, Nicole A. [1 ]
Sailor, Michael J. [1 ]
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Mat Sci & Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[3] Kyoto Univ, Innovat Capital Co Ltd, Sakyo Ku, 36-1 Yoshida Honmachi, Kyoto 6068317, Japan
基金
美国国家科学基金会;
关键词
MESOPOROUS SILICON; DRUG-DELIVERY; BIOCOMPATIBILITY; DESIGN; SI;
D O I
10.1002/ppsc.201600326
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The use of high-shear microfluidization as a rapid, reproducible, and high-yield method to prepare nanoparticles of porous silicon (pSi) with a narrow size distribution is described. Porous films prepared by electrochemical etch of a single-crystal silicon wafer are removed from the substrate, fragmented, dispersed in an aqueous solution, and then processed with a microfluidizer, which generates high yields (57%) of pSi nanoparticles of narrow size distribution (PDI = 0.263) without a filtration step. Preparation of pSi nanoparticles via microfluidization improves yields (by 2.4-fold) and particle size uniformity (by 1.8-fold), and it lowers the total processing time (by 36-fold) over standard ultrasonication or ball milling methods. The average diameter of the nanoparticles can be adjusted over the range 150-350 nm by appropriate adjustment of processing steps. If the fluid carrier in the microfluidizer contains an oxidant for Si, the resulting pSi particles are prepared with a core-shell structure, in which an elemental Si core is encased in a silicon oxide shell. When an aqueous sodium tetraborate processing solution is used, microfluidization generates photoluminescent core-shell pSi particles with a quantum yield of 19% in a single step in less than 20 min.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] POLYMORPHISM OF SILICON UNDER HIGH-PRESSURE
    DUZHEVA, TI
    KABALKINA, SS
    NOVICHKOV, VP
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1978, 74 (05): : 1784 - 1787
  • [32] The intermediate high-pressure phase of silicon
    Christensen, NE
    Novikov, DL
    Methfessel, M
    SOLID STATE COMMUNICATIONS, 1999, 110 (11) : 615 - 619
  • [33] SURFACE MODIFICATION OF PHOTOLUMINESCENT POROUS SILICON
    HARPER, J
    HEINRICH, J
    LAUERHAAS, J
    SAILOR, MJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 205 : 161 - COLL
  • [34] ANISOTROPIC ETCHING OF SILICON AT HIGH-PRESSURE
    ABBOTT, AP
    CAMPBELL, SA
    SATHERLEY, J
    SCHIFFRIN, DJ
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1993, 348 (1-2): : 473 - 479
  • [35] OXIDATION OF SILICON BY HIGH-PRESSURE STEAM
    LIGENZA, JR
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1962, 109 (02) : 73 - 76
  • [36] NITRIDATION OF SILICON UNDER HIGH-PRESSURE
    HEINRICH, J
    ADVANCED CERAMIC MATERIALS, 1987, 2 (3A): : 239 - 242
  • [37] OXIDATION OF SILICON IN HIGH-PRESSURE STEAM
    TSUBOUCHI, N
    MIYOSHI, H
    NISHIMOTO, A
    ABE, H
    JAPANESE JOURNAL OF APPLIED PHYSICS, 1977, 16 (05) : 855 - 856
  • [38] Improved optoelectronic characteristics of nanocrystalline porous silicon by high-pressure water vapor annealing
    Gelloz, B
    Kojima, A
    Koshida, N
    Group-IV Semiconductor Nanostructures, 2005, 832 : 141 - 146
  • [39] CHEMICAL TREATMENT OF PHOTOLUMINESCENT POROUS SILICON
    VADJIKAR, RM
    JAIN, B
    GUPTA, PK
    NANDEDKAR, RV
    BHAWALKAR, DD
    PATNI, MJ
    SRINIVASA, R
    CHANDORKAR, AN
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1994, 23 (02): : L13 - L15
  • [40] Microstructure study of photoluminescent porous silicon
    Weng, YM
    Zong, XF
    CHINESE PHYSICS LETTERS, 1996, 13 (01): : 35 - 38