Mathematical model for silicon electrode - Part II. Simulations on different electrode nanostructures

被引:5
|
作者
De, Sumitava [1 ]
Gordon, Joseph [2 ]
Sikha, Godfrey [2 ]
机构
[1] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA
[2] Appl Mat Inc, Santa Clara, CA 95054 USA
关键词
Li-ion batteries; Silicon anodes; Intercalation induced stresses; Mathematical model; INTERCALATION-INDUCED STRESS; BATTERY ANODES; HIGH-CAPACITY; GENERATION; NANOWIRES;
D O I
10.1016/j.jpowsour.2014.03.130
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The second part of the manuscript presents a one-dimensional axisymmetric plane strain model to study lithium insertion induced stresses in different types of silicon nanostructures, - nanowire (Si NW), nanotube (Si NT) and core/shell (Si C/S) nanostructures. The 1-d plane strain model is the dimensionally reduced form of the 2-d model presented in part I. Simulation results from the 1-d plane strain model is compared to the results from the 2-d model for the Si NW. Each of these structures poses a different type of boundary conditions and the stress evolution due to diffusion in each of the cases are discussed. Simulation results indicate that Si NT structures develop lower tensile stresses compared to Si NW structures under similar current densities. Case studies on Si NT for different values of inner to outer radii ratio are also presented. Furthermore, simulations reveal that the Si C/S structures develop much higher stresses (closer to the core/shell interface) compared to Si NW or Si NT, owing to the different expansion factors of the core and shell material. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:524 / 533
页数:10
相关论文
共 50 条
  • [41] The in situ analysis of interfacial reactions between electrode and organic electrolytes II. Electrodeposition of lithium at Cu electrode
    Morigaki, K
    Morita, A
    Ohta, A
    DENKI KAGAKU, 1998, 66 (08): : 831 - 837
  • [42] Mathematical model of thin-film electrode polarization
    Kuznetsova I.A.
    Kulikov A.N.
    Kulova T.L.
    Metlitskaya A.V.
    Mironenko A.A.
    Rudyi A.S.
    Skundin A.M.
    Russian Microelectronics, 2016, 45 (3) : 180 - 185
  • [43] VERIFICATION OF THE MATHEMATICAL MODEL OF THE ROD ELECTRODE IN THE ELECTROSPINNING PROCESS
    Komarek, Jiri
    Valtera, Jan
    Soukupova, Julie
    Vyslouzilova, Lucie
    Skrivanek, Josef
    Zabka, Petr
    Beran, Jaroslav
    Lukas, David
    NANOCON 2015: 7TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION, 2015, : 296 - 301
  • [45] Fabrication and Evaluation of Electrode-Supported Planar SOFC II. Characterization of Fuel-Electrode-Support
    Murata, Kazutoshi
    Shimotsu, Masateru
    Electrochemistry, 67 (07): : 789 - 793
  • [46] Mathematical modelling of prefermenters -: II.: Model applications
    von Münch, E
    Lant, P
    Newell, R
    WATER RESEARCH, 1999, 33 (12) : 2844 - 2854
  • [47] A mathematical model of hematopolesis: II. Cyclical neutropenia
    Colijn, C
    Mackey, MC
    JOURNAL OF THEORETICAL BIOLOGY, 2005, 237 (02) : 133 - 146
  • [48] Characterization of a Thermodynamic Reference Electrode for Molten LiF-BeF2 (FLiBe): Part II. Materials Analysis
    Carotti, F.
    Laudenbach, A.
    Wu, H.
    Straka, M.
    Scarlat, R. O.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (15) : H835 - H841
  • [49] MATHEMATICAL MODELING AND SIMULATION OF THE POSTURAL CONTROL LOOP - PART II.
    Agarwal, Gyan C.
    Gottlieb, Gerald L.
    1600, (11):
  • [50] A mathematical model for lactose dissolution, part II. Dissolution below the alpha lactose solubility limit
    Lowe, EK
    Paterson, AHJ
    JOURNAL OF FOOD ENGINEERING, 1998, 38 (01) : 15 - 25