Local antimagic r-dynamic coloring of graphs

被引:0
|
作者
Kristiana, A. I. [1 ,2 ,3 ]
Utoyo, M. I. [3 ]
Dafik [1 ,2 ]
Agustin, I. H. [1 ,2 ]
Alfarisi, R. [1 ]
机构
[1] Univ Jember, CGANT, Jember, Indonesia
[2] Univ Jember, Jember, Indonesia
[3] Univ Airlangga, Surabaya, Indonesia
关键词
D O I
10.1088/1755-1315/243/1/012077
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Let G = (V,E) be a connected graph. A bijection function f : E(G) -> {1, 2, 3, ..., E(G)vertical bar g is called a local antimagic labeling if for all uv is an element of E(G)s, w(u) not equal w(v), where w(u) = Sigma(e is an element of E(u))f(e). Such that, local antimagic labeling induces a proper vertex k-coloring of graph G that the neighbors of any vertex u receive at least min {r, d(v)} different colors. The local antimagic r-dynamic chromatic number, denoted by chi(r)la (G) is the minimum k such that graph G has the local antimagic r-dynamic vertex k-coloring. In this paper, we will present the basic results namely the upper bound of the local antimagic r-dynamic chromatic number of some classes graph.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Local Antimagic Vertex Coloring of a Graph
    S. Arumugam
    K. Premalatha
    Martin Bača
    Andrea Semaničová-Feňovčíková
    Graphs and Combinatorics, 2017, 33 : 275 - 285
  • [32] Local Antimagic Vertex Coloring of a Graph
    Arumugam, S.
    Premalatha, K.
    Baa, Martin
    Semanicova-Fenovcikova, Andrea
    GRAPHS AND COMBINATORICS, 2017, 33 (02) : 275 - 285
  • [33] The chromatic number of local antimagic total edge coloring of some related cycle graphs
    Kurniawati, E. Y.
    Dafik
    Agustin, I. H.
    Prihandini, R. M.
    Nisviasari, R.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [34] Local antimagic labeling of graphs
    Yu, Xiaowei
    Hu, Jie
    Yang, Donglei
    Wu, Jianliang
    Wang, Guanghui
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 322 : 30 - 39
  • [35] Local antimagic orientation of graphs
    Chang, Yulin
    Jing, Fei
    Wang, Guanghui
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (04) : 1129 - 1152
  • [36] Local antimagic orientation of graphs
    Yulin Chang
    Fei Jing
    Guanghui Wang
    Journal of Combinatorial Optimization, 2020, 39 : 1129 - 1152
  • [37] On the r-dynamic coloring of the direct product of a path and a k-subdivision of a star graph
    Falcon, Raul M.
    Venkatachalam, M.
    Gowri, S.
    Nandini, G.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (03)
  • [38] On the r-dynamic coloring of the direct product of a path with either a complete graph or a wheel graph
    Deepa, T.
    Falcon, Raul M.
    Venkatachalam, M.
    AIMS MATHEMATICS, 2021, 6 (02): : 1470 - 1496
  • [39] The r-Dynamic Chromatic Number of Planar Graphs Without Special Short Cycles
    Bu, Yuehua
    Yang, Ruiying
    Zhu, Hongguo
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, 13513 LNCS : 316 - 326
  • [40] On local distance antimagic labeling of graphs
    Handa, Adarsh Kumar
    Godinho, Aloysius
    Singh, Tarkeshwar
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (01) : 91 - 96