Image Classification Algorithm Named OCFC Based on Self-supervised Learning

被引:0
|
作者
Shu, Qihui [1 ]
Liu, Song [1 ]
Wang, Jianwen [1 ]
Lai, Qinghan [1 ]
Zhou, Zihan [1 ]
机构
[1] Qilu Univ Technol, Coll Comp Sci & Technol, Shandong Acad Sci, Jinan, Peoples R China
关键词
Image Classification; Self-supervised Learning; Convolution Restricted Boltzmann Machine; Fuzzy C-means; CNN Model;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning has been successfully applied to computer vision, speech recognition and other domains. In image processing, the CNN model has been relatively mature in the training of labeled data. There are labeled data that need to be manually labeled in supervised learning, but now there are a large number of data without labels or with a small number of labels that need to be processed. We propose an image classification algorithm named OCFC based on self-supervised learning without manual labeling. After image preprocessing, features are extracted by three-layer Convolution Restricted Boltzmann Machine. Then the extracted feature clusters are labeled with pseudo-labels by Fuzzy C-means algorithm. Finally, the CNN model is used to classify and predict other image categories. The self-supervised learning model can be arbitrarily transferred to a shallow model or a deep model. The experimental results show that this method can effectively avoid the complexity of manually extracting features, and the accuracy on the STL-10 dataset reaches 82.7%.
引用
收藏
页码:589 / 594
页数:6
相关论文
共 50 条
  • [31] iSSL-AL: a deep active learning framework based on self-supervised learning for image classification
    Agha, Rand
    Mustafa, Ahmad M.
    Abuein, Qusai
    Neural Computing and Applications, 2024, 36 (28) : 17699 - 17713
  • [32] LFM Signal Sources Classification Based on Self-Supervised Learning
    Yang, Tianqi
    Mi, Siya
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2023, 112 : 103 - 110
  • [33] Classification-Based Self-Supervised Learning for Anomaly Detection
    Li, Honghu
    Zhu, Yuesheng
    He, Ying
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878
  • [34] Self-supervised learning and semi-supervised learning for multi-sequence medical image classification
    Wang, Yueyue
    Song, Danjun
    Wang, Wentao
    Rao, Shengxiang
    Wang, Xiaoying
    Wang, Manning
    NEUROCOMPUTING, 2022, 513 : 383 - 394
  • [35] A Classification Method for Diabetic Retinopathy Based on Self-supervised Learning
    Long, Fei
    Xiong, Haoren
    Sang, Jun
    ADVANCED INTELLIGENT COMPUTING IN BIOINFORMATICS, PT I, ICIC 2024, 2024, 14881 : 347 - 357
  • [36] LFM Signal Sources Classification Based on Self-Supervised Learning
    Yang T.
    Mi S.
    Progress in Electromagnetics Research Letters, 2023, 112 : 103 - 110
  • [37] Anomaly classification based on self-supervised learning and its application
    Han, Yongsheng
    Qi, Zhiquan
    Tian, Yingjie
    JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (03)
  • [38] Self-Supervised Learning With Prediction of Image Scale and Spectral Order for Hyperspectral Image Classification
    Yang, Xiaofei
    Cao, Weijia
    Lu, Yao
    Zhou, Yicong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [39] Remote Sensing Image Scene Classification with Self-Supervised Learning Based on Partially Unlabeled Datasets
    Chen, Xiliang
    Zhu, Guobin
    Liu, Mingqing
    REMOTE SENSING, 2022, 14 (22)
  • [40] Cervical optical coherence tomography image classification based on contrastive self-supervised texture learning
    Chen, Kaiyi
    Wang, Qingbin
    Ma, Yutao
    MEDICAL PHYSICS, 2022, 49 (06) : 3638 - 3653