2D conditional random fields for image classification

被引:0
|
作者
Wen, Ming [1 ]
Han, Hui [1 ]
Wang, Lu [1 ]
Wang, Wenyuan [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
来源
关键词
multimedia data mining; image classification; 2D conditional random fields; loopy belief propagation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For grid-based image classification, an image is divided into blocks, and a feature vector is formed for each block. Conventional grid-based classification algorithms suffer from inability to take into account the two-dimensional neighborhood interactions of blocks. We present a classification method based on two-dimensional Conditional Random Fields which can avoid the limitation. As a discriminative approach, the proposed method offers several advantages over generative approaches, including the ability to relax the assumption of conditional independence of the observations.
引用
收藏
页码:383 / +
页数:2
相关论文
共 50 条
  • [21] Segmentation of 2D Fetal Ultrasound Images by Exploiting Context Information using Conditional Random Fields
    Gupta, Lalit
    Sisodia, Rajendra Singh
    Pallavi, V.
    Firtion, Celine
    Ramachandran, Ganesan
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 7219 - 7222
  • [22] A classification of 2D random Dirac fermions
    Bernard, D
    LeClair, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (11): : 2555 - 2567
  • [23] Learning Conditional Random Fields for Classification of Hyperspectral Images
    Zhong, Ping
    Wang, Runsheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (07) : 1890 - 1907
  • [24] Classification of Hyperspectral Images Based on Conditional Random Fields
    Hu, Yang
    Saber, Eli
    Monteiro, Sildomar T.
    Cahill, Nathan D.
    Messinger, David
    IMAGE PROCESSING: MACHINE VISION APPLICATIONS VIII, 2015, 9405
  • [25] Hidden Conditional Ordinal Random Fields for Sequence Classification
    Kim, Minyoung
    Pavlovic, Vladimir
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II: EUROPEAN CONFERENCE, ECML PKDD 2010, 2010, 6322 : 51 - 65
  • [26] CONDITIONAL RANDOM FIELDS FOR THE CLASSIFICATION OF LIDAR POINT CLOUDS
    Niemeyer, J.
    Mallet, C.
    Rottensteiner, F.
    Soergel, U.
    ISPRS HANNOVER WORKSHOP 2011: HIGH-RESOLUTION EARTH IMAGING FOR GEOSPATIAL INFORMATION, 2011, 39-4 (W19): : 209 - 214
  • [27] Weakly Supervised Cervical Histopathological Image Classification Using Multilayer Hidden Conditional Random Fields
    Li, Chen
    Chen, Hao
    Xue, Dan
    Hu, Zhijie
    Zhang, Le
    He, Liangzi
    Xu, Ning
    Qi, Shouliang
    Ma, He
    Sun, Hongzan
    INFORMATION TECHNOLOGY IN BIOMEDICINE, 2019, 1011 : 209 - 221
  • [28] Nonparametric change estimation in 2D random fields
    He, Ting
    Tong, Lang
    Swarni, Ananthrarn
    MILCOM 2005 - 2005 IEEE MILITARY COMMUNICATIONS CONFERENCE, VOLS 1-5, 2005, : 2454 - 2460
  • [29] Conditional Random Fields Based on Weighted Feature Difference Potential for Remote Sensing Image Classification
    Sun, Yi
    Tian, Yan
    Xu, Yiping
    ADVANCES IN INFORMATION AND COMMUNICATION, VOL 2, 2020, 1130 : 590 - 603
  • [30] Prediction and Conditional Simulation of a 2D Lognormal Diffusion Random Field
    R. Gutiérrez
    C. Roldán
    R. Gutiérrez-Sánchez
    J. M. Angulo
    Methodology and Computing in Applied Probability, 2007, 9 : 413 - 423