LANGAGE: A maple package for automaton characterization of regular languages

被引:1
|
作者
Caron, P [1 ]
机构
[1] Univ Rouen, Lab Informat Fondamentale & Appliquee Rouen, F-76821 Mt St Aignan, France
关键词
algorithms; automata; locally testable languages; regular languages;
D O I
10.1016/S0304-3975(99)00013-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
LANGAGE is a set of procedures for deciding whether or not a language given by its minimal automaton is piecewise testable, locally testable, strictly locally testable, or strongly locally testable. New polynomial algorithms are implemented for the two last properties. This package is written using the symbolic computation system Maple. It works with AG, a set of Maple pack ages for processing automata and finite semigroups. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:5 / 15
页数:11
相关论文
共 50 条
  • [31] Regular component decomposition of regular languages
    Liu, YJ
    THEORETICAL COMPUTER SCIENCE, 2003, 299 (1-3) : 743 - 749
  • [32] On the size of the universal automaton of a regular language
    Lombardy, Sylvain
    Stacs 2007, Proceedings, 2007, 4393 : 85 - 96
  • [33] Regular and Singular Boundary Problems in Maple
    Korporal, Anja
    Regensburger, Georg
    Rosenkranz, Markus
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2011, 6885 : 280 - +
  • [34] PERIODICITY OF REGULAR LANGUAGES
    HWANG, K
    INFORMATION AND CONTROL, 1979, 40 (02): : 205 - 222
  • [35] REGULAR SEPARATION OF LANGUAGES
    ARIKAWA, S
    BULLETIN OF MATHEMATICAL STATISTICS, 1974, 16 (1-2): : 83 - 94
  • [36] On the entropy of regular languages
    Ceccherini-Silberstein, T
    Machi, A
    Scarabotti, F
    THEORETICAL COMPUTER SCIENCE, 2003, 307 (01) : 93 - 102
  • [37] THE LIMITED REGULAR LANGUAGES
    TANG, CJ
    ZHANG, YL
    THEORETICAL COMPUTER SCIENCE, 1983, 23 (01) : 1 - 10
  • [38] ON REGULAR TRACE LANGUAGES
    SAKAROVITCH, J
    THEORETICAL COMPUTER SCIENCE, 1987, 52 (1-2) : 59 - 75
  • [39] Intercode regular languages
    Han, Yo-Sub
    Salomaa, Kai
    Wood, Derick
    FUNDAMENTA INFORMATICAE, 2007, 76 (1-2) : 113 - 128
  • [40] Undecidability in ω-regular languages
    Halava, Vesa
    Harju, Tero
    Karhumäki, Juhani
    FUNDAMENTA INFORMATICAE, 2006, 73 (1-2) : 119 - 125