Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics

被引:26
|
作者
Yu, Haitong [1 ]
Duan, Yuanyuan [1 ]
Yang, Zhen [1 ]
机构
[1] Tsinghua Univ, Key Lab Thermal Sci & Power Engn MOE, Beijing Key Lab Utilizat & Reduct Technol CO2, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Near-field radiative transfer; Nanowire; Nanohole; Fourier Model Method; Thermophotovoltaics; HEAT-TRANSFER; SURFACE; SYSTEM; LIMIT;
D O I
10.1016/j.ijheatmasstransfer.2018.02.085
中图分类号
O414.1 [热力学];
学科分类号
摘要
To design a nano-gap thermophotovoltaic device with selectively enhanced radiative transfer above the cell's bandgap, this work theoretically investigated the near-field radiative transfer from a plasmonic Drude emitter to a nanostructured GaSb absorber, with a finite-thickness surface layer of nanowire or nanohole arrays, across a 200 nm vacuum gap. The Fourier Modal method (FMM) is used to rigorously characterize the radiative transfer involving diffractive periodic structures. The results showed that the added nanostructure, especially nanowires, effectively and selectively enhanced the near-field radiative transfer above the bandgap, with a maximum of three times the spectral radiative heat flux when compared to the unstructured GaSb case. By considering periodic structures in two dimensions, this work revealed the difference between the nanowire and nanohole absorbers in manipulating of the radiative heat flux, showing that the nanowire array offers largely enhanced radiative heat transfer compared with the nanohole arrays with similar geometric parameters, which cannot be quantitatively characterized by effective medium theories even though the structural size is much smaller than the studied wavelength. The results proved that nanohole and nanowire structures can be used to significantly enhance the power and efficiency of a nano-gap thermophotovoltaic device, for which the equivalent of anti-reflection structures of the semiconductor cells have seldom been studied. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:67 / 74
页数:8
相关论文
共 50 条
  • [31] Near-Field Radiative Heat Transfer between Disordered Multilayer Systems
    田鹏
    葛文宣
    李松松
    高雷
    蒋建华
    徐亚东
    Chinese Physics Letters, 2023, 40 (06) : 129 - 134
  • [32] Near-Field Radiative Heat Transfer between Disordered Multilayer Systems
    Tian, Peng
    Ge, Wenxuan
    Li, Songsong
    Gao, Lei
    Jiang, Jianhua
    Xu, Yadong
    CHINESE PHYSICS LETTERS, 2023, 40 (06)
  • [33] Near-field radiative heat transfer between moving anisotropic surfaces
    Wang, Yi-Xu
    Zhang, Yong
    Hao, Yun-Chao
    Cai, Zhi-Ming
    Yi, Hong-Liang
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2024, 315
  • [34] Near-field radiative heat transfer between metamaterial thin films
    Basu, Soumyadipta
    Francoeur, Mathieu
    OPTICS LETTERS, 2014, 39 (05) : 1266 - 1269
  • [35] Near-field radiative heat transfer between shifted graphene gratings
    Luo, Minggang
    Jeyar, Youssef
    Guizal, Brahim
    Antezza, Mauro
    PHYSICAL REVIEW B, 2024, 109 (19)
  • [36] NEAR-FIELD RADIATIVE HEAT TRANSFER BETWEEN MATERIALS WITH DIELECTRIC COATINGS
    Fu, Ceji
    Tan, Wenchang
    MICRONANO2008-2ND INTERNATIONAL CONFERENCE ON INTEGRATION AND COMMERCIALIZATION OF MICRO AND NANOSYSTEMS, PROCEEDINGS, 2008, : 413 - 419
  • [37] Near-field radiative heat transfer between general materials and metamaterials
    ZHENG ZhiHeng & XUAN YiMin* School of Energy and Power Engineering
    Science Bulletin, 2011, (22) : 2312 - 2319
  • [38] Near-Field Radiative Heat Transfer between Disordered Multilayer Systems
    田鹏
    葛文宣
    李松松
    高雷
    蒋建华
    徐亚东
    Chinese Physics Letters, 2023, (06) : 129 - 134
  • [39] Near-field radiative heat transfer between spherical micro particles
    Huang, Yong
    Liang, Xin-Gang
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2004, 25 (02): : 290 - 292
  • [40] Near-field radiative heat transfer between clusters of dielectric nanoparticles
    Dong, J.
    Zhao, J. M.
    Liu, L. H.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 197 : 114 - 122