Hermitian kernels with bounded structure

被引:0
|
作者
Constantinescu, T [1 ]
Gheondea, A [1 ]
机构
[1] ACAD ROMANE,INST MATEMAT,BUCHAREST 70700,ROMANIA
关键词
D O I
10.1007/BF01191529
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hermitian kernels are introduced with the property that their Kolmogorov decompositions admit a Schur-type description. The main technical tool is the solution of an extension problem for indefinite factorizations and applications are indicated to some recent Krein space versions of the trigonometric moment problem and the Caratheodory-Schur problem.
引用
收藏
页码:141 / 164
页数:24
相关论文
共 50 条
  • [1] Hermitian kernels with bounded structure
    Tiberiu Constantinescu
    Aurelian Gheondea
    Integral Equations and Operator Theory, 1997, 27 : 141 - 164
  • [2] Heat Kernels Estimates for Hermitian Line Bundles on Manifolds of Bounded Geometry
    Kordyukov, Yuri A.
    MATHEMATICS, 2021, 9 (23)
  • [3] Exponential decay of Bergman kernels on complete Hermitian manifolds with Ricci curvature bounded from below
    Berger, Franz
    Dall'Ara, Gian Maria
    Duong Ngoc Son
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (12) : 2086 - 2111
  • [4] KERNELS OF BOUNDED SEQUENCES
    DAVYDOV, NA
    MIKHALIN, GA
    MATHEMATICAL NOTES, 1978, 23 (3-4) : 293 - 300
  • [5] Completely bounded kernels
    Tirthankar Bhattacharyya
    Michael A. Dritschel
    Christopher S. Todd
    Acta Scientiarum Mathematicarum, 2013, 79 (1-2): : 191 - 217
  • [6] Completely bounded kernels
    Bhattacharyya, Tirthankar
    Dritschel, Michael A.
    Todd, Christopher S.
    ACTA SCIENTIARUM MATHEMATICARUM, 2013, 79 (1-2): : 191 - 217
  • [7] Painlevé Kernels in Hermitian Matrix Models
    Maurice Duits
    Constructive Approximation, 2014, 39 : 173 - 196
  • [8] Invariant Hermitian kernels and their Kolmogorov decompositions
    Constantinescu, T
    Gheondea, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (10): : 797 - 802
  • [9] Painlev, Kernels in Hermitian Matrix Models
    Duits, Maurice
    CONSTRUCTIVE APPROXIMATION, 2014, 39 (01) : 173 - 196