Invariant Hermitian kernels and their Kolmogorov decompositions

被引:0
|
作者
Constantinescu, T [1 ]
Gheondea, A
机构
[1] Univ Texas, Dept Math, Richardson, TX 75083 USA
[2] Inst Matemat Acad Romane, Bucharest 70700, Romania
关键词
D O I
10.1016/S0764-4442(00)01708-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Hermitian kernels invariant under the action of a semigroup with involution. We characterize the Hermitian kernels that realize the given action by bounded operators on a Krein space. Applications include the GNS representation of *-algebras associated to Hermitian functionals and the dilation theory of Hermitian maps on C*-algebras. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:797 / 802
页数:6
相关论文
共 50 条
  • [1] KOLMOGOROV DECOMPOSITIONS AND EXTREMALITY CONDITIONS FOR POSITIVE COVARIANT KERNELS
    Haapasalo, Erkka
    Pellonpaa, Juha-Pekka
    REPORTS ON MATHEMATICAL PHYSICS, 2019, 83 (02) : 253 - 271
  • [2] Representations of hermitian kernels by means of Krein spaces. II. Invariant kernels
    Constantinescu, T
    Gheondea, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 216 (02) : 409 - 430
  • [3] Representations of Hermitian Kernels¶by Means of Krein Spaces.¶II. Invariant Kernels
    T. Constantinescu
    A. Gheondea
    Communications in Mathematical Physics, 2001, 216 : 409 - 430
  • [4] HERMITIAN TENSOR DECOMPOSITIONS
    Nie, Jiawang
    Yang, Zi
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (03) : 1115 - 1144
  • [5] Biclique decompositions and Hermitian rank
    Gregory, DA
    Watts, VL
    Shader, BL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 292 (1-3) : 267 - 280
  • [6] Hermitian kernels with bounded structure
    Tiberiu Constantinescu
    Aurelian Gheondea
    Integral Equations and Operator Theory, 1997, 27 : 141 - 164
  • [7] Hermitian kernels with bounded structure
    Constantinescu, T
    Gheondea, A
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 27 (02) : 141 - 164
  • [8] Separability of Hermitian tensors and PSD decompositions
    Dressler, Mareike
    Nie, Jiawang
    Yang, Zi
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6581 - 6608
  • [9] Decompositions of Gelfand-Shilov kernels into kernels of similar class
    Toft, Joachim
    Khrennikov, Andrei
    Nilsson, Borje
    Nordebo, Sven
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (01) : 315 - 322
  • [10] Kolmogorov decompositions and the realization of time dependent systems
    Constantinescu, T
    Gheondea, A
    OPERATOR THEORY AND INTERPOLATION, 2000, 115 : 123 - 144