Coordination Effects in Polymer Electrolytes: Fast Li+ Transport by Weak Ion Binding

被引:69
|
作者
Rosenwinkel, Mark P. [1 ]
Andersson, Rassmus [2 ]
Mindemark, Jonas [2 ]
Schoenhoff, Monika [1 ]
机构
[1] Univ Munster, Inst Phys Chem, D-48149 Munster, Germany
[2] Uppsala Univ, Dept Chem, Angstrom Lab, SE-75121 Uppsala, Sweden
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2020年 / 124卷 / 43期
关键词
TRANSFERENCE NUMBERS; SOLID ELECTROLYTES; MOLECULAR-WEIGHT; SALT-CONCENTRATION; LITHIUM METAL; CONDUCTIVITY; CHALLENGES; DYNAMICS; TEMPERATURE; COMPLEXES;
D O I
10.1021/acs.jpcc.0c08369
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In view of the limited ionic conductivity and low lithium transference number in classical poly(ethylene oxide) (PEO)-based salt-in-polymer electrolytes, employing alternative polymer architectures, e.g., polyester homopolymers or copolymers, is a promising approach. To shed light on the influence of the coordination properties of different polymer architectures and to identify their influence on Li ion transport, different polymeric structures are compared, i.e., poly(e-caprolactone) (PCL), poly(trimethylene carbonate) (PTMC), and a PCL-co-PTMC random copolymer, combined with lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) at varying Li+/monomer ratios r. Electrophoretic NMR (H-1 and F-19 eNMR) is applied to determine the electrophoretic mobilities of both ionic species, from which partial conductivities and Li transference numbers are calculated. In comparison to PEO-based electrolytes, the ester-based systems show a much higher lithium transference number (similar to 0.5 compared to similar to 0.2), while the total ionic conductivity is lower. However, the partial lithium conductivities are found to be almost equal in PEO- and PCL-based electrolytes. The results show how via modifying the coordination strength, the competition of Li+-polymer coordination and Li+ ion pair formation can be finely tuned to yield either systems with a maximized total conductivity or maximized Li transference number. Thus, for the promising class of polyester-based polymer electrolytes, showing excellent lithium conduction properties, a molecular level-based understanding of the electrochemical transport parameters is derived, complementing the segmental motion-based description of ion transport with the additional effects of ion coordination.
引用
收藏
页码:23588 / 23596
页数:9
相关论文
共 50 条
  • [41] Li+ Transport in Single-Ion Conducting Side-Chain Polymer Electrolytes with Nanoscale Self-Assembly of Ordered Ionic Domains
    Liu, Jiacheng
    Yang, Lingyu
    Pickett, Phillip D.
    Park, Bumjun
    Schaefer, Jennifer L.
    MACROMOLECULES, 2022, 55 (17) : 7752 - 7762
  • [42] Ion Coordination and Transport in Magnesium Polymer Electrolytes Based on Polyester-co-Polycarbonate
    Park, Bumjun
    Andersson, Rassmus
    Pate, Sarah G.
    Liu, Jiacheng
    O'Brien, Casey P.
    Hernandez, Guiomar
    Mindemark, Jonas
    Schaefer, Jennifer L.
    ENERGY MATERIAL ADVANCES, 2021, 2021
  • [43] Electrolytes for Li-ion transport - Review
    Marcinek, M.
    Syzdek, J.
    Marczewski, M.
    Piszcz, M.
    Niedzicki, L.
    Kalita, M.
    Plewa-Marczewska, A.
    Bitner, A.
    Wieczorek, P.
    Trzeciak, T.
    Kasprzyk, M.
    Lezak, P.
    Zukowska, Z.
    Zalewska, A.
    Wieczorek, W.
    SOLID STATE IONICS, 2015, 276 : 107 - 126
  • [44] Trapping Anions to Govern the Li+ Local Coordination Environment for a Highly Li+ Conductive Solid Polymer Electrolyte
    Xue, Yichen
    Zhao, Haitao
    Zhou, Xiaoyu
    Zhang, Huandi
    Zhao, Zehua
    Shi, Xiaowei
    Liu, Junpeng
    Liu, Jiamei
    Li, Lei
    ACS APPLIED ENERGY MATERIALS, 2025, 8 (07): : 4546 - 4553
  • [45] Improved Mechanical Strength without Sacrificing Li-Ion Transport in Polymer Electrolytes
    Bamford, James T.
    Jones, Seamus D.
    Schauser, Nicole S.
    Pedretti, Benjamin J.
    Gordon, Leo W.
    Lynd, Nathaniel A.
    Clement, RaphaeleJ.
    Segalman, Rachel A.
    ACS MACRO LETTERS, 2024, 13 (05) : 638 - 643
  • [46] Dielectric relaxation spectroscopy for the characterization of ion transport in solid polymer electrolytes in Li-ion cells
    Kumbhakar, Kajal
    Pham, Thuy Duong
    Lee, Kyung-Koo
    Kwak, Kyungwon
    Cho, Minhaeng
    ELECTROCHIMICA ACTA, 2023, 462
  • [47] Effects of solvent formulations in electrolytes on fast charging of Li-ion cells
    Wu, Xianyang
    Liu, Tianyi
    Bai, Yaocai
    Feng, Xu
    Rahman, Muhammad Mominur
    Sun, Cheng-Jun
    Lin, Feng
    Zhao, Kejie
    Du, Zhijia
    ELECTROCHIMICA ACTA, 2020, 353 (353)
  • [48] Bicontinuous solid polymer electrolytes using Li+ enriched ionic liquids
    Harte, Timothy
    Dharmasiri, Bhagya
    Coia, Piers
    Eyckens, Daniel J.
    Henderson, Luke C.
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 402
  • [49] Effects of Li+ transport and Li+ immobilization on Li+/Mg2+ competition in cells:: implications for bipolar disorder
    Layden, BT
    Abukhdeir, AM
    Williams, N
    Fonseca, CP
    Carroll, L
    Castro, MMCA
    Geraldes, CFGC
    Bryant, FB
    de Freitas, DM
    BIOCHEMICAL PHARMACOLOGY, 2003, 66 (10) : 1915 - 1924
  • [50] Biomimetic brain-like nanostructures for solid polymer electrolytes with fast ion transport
    Abdelmaoula, Ahmed Eissa
    Du, Lulu
    Xu, Lin
    Cheng, Yu
    Mahdy, Amir A.
    Tahir, Muhammad
    Liu, Ziang
    Mai, Liqiang
    SCIENCE CHINA-MATERIALS, 2022, 65 (06) : 1476 - 1484