Well-Posedness of Boundary Layer Equations for Time-Dependent Flow of Non-Newtonian Fluids

被引:7
|
作者
Renardy, Michael [1 ]
Wang, Xiaojun [2 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
High Weissenberg number limit; viscoelastic flow; boundary layer; VISCOELASTIC SHEAR FLOWS; CONVECTED MAXWELL FLUID; NAVIER-STOKES EQUATION; ZERO-VISCOSITY LIMIT; DIFFERENTIAL-OPERATORS; INFINITE WEISSENBERG; REYNOLDS-NUMBERS; STABILITY;
D O I
10.1007/s00021-013-0150-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the flow of an upper convected Maxwell fluid in the limit of high Weissenberg and Reynolds number. In this limit, the no-slip condition cannot be imposed on the solutions. We derive equations for the resulting boundary layer and prove the well-posedness of these equations. A transformation to Lagrangian coordinates is crucial in the argument.
引用
收藏
页码:179 / 191
页数:13
相关论文
共 50 条
  • [31] NON-NEWTONIAN BOUNDARY-LAYER FLOW
    BIZZELL, GD
    SLATTERY, JC
    CHEMICAL ENGINEERING SCIENCE, 1962, 17 (10) : 777 - 782
  • [32] Lie-group analysis of boundary-layer equations of non-Newtonian fluids
    Dept of Mechanical Engineering, Celal Bayar University, Muradiye, Manisa, Turkey
    Turk J Eng Envir Sci, 5 (289-294):
  • [34] Well-posedness of free boundary hard phase fluids in Minkowski background and their Newtonian limit
    Miao, Shuang
    Shahshahani, Sohrab
    Wu, Sijue
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2021, 9 (02) : 269 - 350
  • [35] TIME-DEPENDENT CONVECTION WITH NON-NEWTONIAN VISCOSITY
    CHRISTENSEN, UR
    YUEN, DA
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1989, 94 (B1): : 814 - 820
  • [36] Local well-posedness to the thermal boundary layer equations in Sobolev space
    Zou, Yonghui
    Xu, Xin
    Gao, An
    AIMS MATHEMATICS, 2023, 8 (04): : 9933 - 9964
  • [37] Local well-posedness of solutions to the boundary layer equations for 2D compressible flow
    Fan, Long
    Ruan, Lizhi
    Yang, Anita
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (02)
  • [38] LOCAL WELL-POSEDNESS OF SOLUTIONS TO THE BOUNDARY LAYER EQUATIONS FOR COMPRESSIBLE TWO-FLUID FLOW
    Fan, Long
    Liu, Cheng-Jie
    Ruan, Lizhi
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 4009 - 4050
  • [39] MIXED CONVECTION BOUNDARY-LAYER FLOW OF NON-NEWTONIAN FLUIDS ON A HORIZONTAL PLATE
    HADY, FM
    APPLIED MATHEMATICS AND COMPUTATION, 1995, 68 (2-3) : 105 - 112
  • [40] HEAT AND MASS TRANSFER IN A BOUNDARY LAYER OF NON-NEWTONIAN FLUIDS
    LUIKOV, AV
    SHULMAN, ZP
    BERKOVSK.BM
    CHEMICAL ENGINEERING PROGRESS, 1966, 62 (07) : 79 - &