SIMPLE NORMAL CROSSING FANO VARIETIES AND LOG FANO MANIFOLDS

被引:6
|
作者
Fujita, Kento [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
基金
日本学术振兴会;
关键词
CLASSIFICATION; CONTRACTIONS; 3-FOLDS;
D O I
10.1215/00277630-2430136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A projective log variety (X, D) is called a log Fano manifold if X is smooth and if D is a reduced simple normal crossing divisor on X with -(K-X + D) ample The n-dimensional log Fano manifolds (X, D) with nonzero D are classified in this article when the log Fano index r of (X, D) satisfies either r >= n/2 with rho(X) >= 2 or r >= n - 2. This result is a partial generalization of the classification of logarithmic Fano 3-folds by Maeda.
引用
收藏
页码:95 / 123
页数:29
相关论文
共 50 条
  • [41] Simple connectedness of Fano log pairs with semi-log canonical singularities
    Osamu Fujino
    Wenfei Liu
    Mathematische Zeitschrift, 2020, 295 : 341 - 348
  • [42] On Banica sheaves and Fano manifolds
    Ballico, E
    Wisniewski, JA
    COMPOSITIO MATHEMATICA, 1996, 102 (03) : 313 - 335
  • [43] FANO MANIFOLDS AND QUADRIC BUNDLES
    WISNIEWSKI, JA
    MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (02) : 261 - 271
  • [44] Seshadri constants and Fano manifolds
    Seunghun Lee
    Mathematische Zeitschrift, 2003, 245 : 645 - 656
  • [45] On Fano manifolds of large pseudoindex
    Novelli, Carla
    JOURNAL OF ALGEBRA, 2016, 449 : 138 - 162
  • [46] On images of weak Fano manifolds
    Fujino, Osamu
    Gongyo, Yoshinori
    MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (1-2) : 531 - 544
  • [47] On images of weak Fano manifolds
    Osamu Fujino
    Yoshinori Gongyo
    Mathematische Zeitschrift, 2012, 270 : 531 - 544
  • [48] Fano schemes and Moishezon manifolds
    Bonavero, L
    Voisin, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (09): : 1019 - 1024
  • [49] Fano generalized Bott manifolds
    Yusuke Suyama
    manuscripta mathematica, 2020, 163 : 427 - 435
  • [50] The α-invariant on toric Fano manifolds
    Song, J
    AMERICAN JOURNAL OF MATHEMATICS, 2005, 127 (06) : 1247 - 1259