A note on isoparametric generalized quadrangles

被引:1
|
作者
Immervoll, Stefan [1 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
D O I
10.1007/s00013-006-1758-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize a result of Kramer, see [7, 10.7 and 10.10], on generalized quadrangles associated with isoparametric hypersurfaces of Clifford type to Tits buildings of type C-2 derived from arbitrary isoparametric hypersurfaces with four distinct principal curvatures in spheres: two distinct points p and q of a generalized quadrangle associated with an isoparametric hypersurface in the unit sphere of a Euclidean vector space can be joined by a line K if and only if (p-q)/parallel to p-q parallel to is a line. This line is orthogonal to K. Dually, two distinct lines L and K intersect if and only if (L-K)/parallel to L-K parallel to is point.
引用
收藏
页码:478 / 480
页数:3
相关论文
共 50 条
  • [31] GENERALIZED QUADRANGLES WITH SYMMETRY 2
    PAYNE, SE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A171 - A171
  • [32] GENERALIZED QUADRANGLES OF EVEN ORDER
    PAYNE, SE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A164 - A164
  • [33] Parameters of translation generalized quadrangles
    Rosehr, N
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2005, 12 (03) : 329 - 340
  • [34] CLASSICAL KLINGENBERG GENERALIZED QUADRANGLES
    KEPPENS, D
    ARCHIV DER MATHEMATIK, 1990, 55 (06) : 619 - 624
  • [35] Groups of Projectivities of Generalized Quadrangles
    Leen Brouns
    Katgrin Tent
    Hendrik Van Maldeghem
    Geometriae Dedicata, 1998, 73 : 165 - 180
  • [36] GENERALIZED QUADRANGLES IN PROJECTIVE SPACES
    BUEKENHOUT, F
    LEFEVRE, C
    ARCHIV DER MATHEMATIK, 1974, 25 (05) : 540 - 552
  • [37] SMALL EXTENDED GENERALIZED QUADRANGLES
    CAMERON, PJ
    FISHER, PH
    EUROPEAN JOURNAL OF COMBINATORICS, 1990, 11 (05) : 403 - 413
  • [38] Finite Translation Generalized Quadrangles
    Thas, J. A.
    PERSPECTIVES IN MATHEMATICAL SCIENCES II: PURE MATHEMATICS, 2009, 8 : 223 - 246
  • [39] Identifying codes for generalized quadrangles
    Tamás Héger
    György Kiss
    Anamari Nakić
    Leo Storme
    Journal of Geometry, 2024, 115
  • [40] Affine generalized quadrangles - An axiomatization
    Pralle, H
    GEOMETRIAE DEDICATA, 2001, 84 (1-3) : 1 - 23