Efficient solar hydrogen generation in microgravity environment

被引:50
|
作者
Brinkert, Katharina [1 ,2 ]
Richter, Matthias H. [1 ,3 ]
Akay, Oemer [4 ]
Liedtke, Janine [2 ]
Giersig, Michael [4 ,5 ]
Fountaine, Katherine T. [6 ,7 ]
Lewerenz, Hans-Joachim [8 ,9 ]
机构
[1] CALTECH, Div Chem & Chem Engn, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[2] European Space Agcy, Adv Concepts Team, Estec, Keplerlaan 1, NL-2200 AG Noordwijk, Netherlands
[3] Brandenburg Tech Univ Cottbus, Appl Phys & Sensors, K Wachsmann Allee 17, D-03046 Cottbus, Germany
[4] Free Univ Berlin, Dept Phys, Arnimallee 14, D-14195 Berlin, Germany
[5] South China Normal Univ, Int Acad Optoelect Zhaoqing, Guangzhou 526238, Guangdong, Peoples R China
[6] CALTECH, Resnick Sustainabil Inst, Pasadena, CA 91125 USA
[7] Northrop Grumman Corp, NG Next, One Space Pk, Redondo Beach, CA 90278 USA
[8] CALTECH, Div Engn & Appl Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[9] CALTECH, Joint Ctr Artificial Photosynth, 1200 E Calif Blvd, Pasadena, CA 91125 USA
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
关键词
WATER ELECTROLYSIS; CONVERSION;
D O I
10.1038/s41467-018-04844-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Long-term space missions require extra-terrestrial production of storable, renewable energy. Hydrogen is ascribed a crucial role for transportation, electrical power and oxygen generation. We demonstrate in a series of drop tower experiments that efficient direct hydrogen production can be realized photoelectrochemically in microgravity environment, providing an alternative route to existing life support technologies for space travel. The photoelectrochemical cell consists of an integrated catalyst-functionalized semiconductor system that generates hydrogen with current densities >15 mA/cm(2) in the absence of buoyancy. Conditions are described adverting the resulting formation of ion transport blocking froth layers on the photoelectrodes. The current limiting factors were overcome by controlling the micro-and nanotopography of the Rh electrocatalyst using shadow nanosphere lithography. The behaviour of the applied system in terrestrial and microgravity environment is simulated using a kinetic transport model. Differences observed for varied catalyst topography are elucidated, enabling future photoelectrode designs for use in reduced gravity environments.
引用
收藏
页数:8
相关论文
共 50 条
  • [32] Integrative solar absorbers for highly efficient solar steam generation
    Lin, Xiaofeng
    Chen, Jiayao
    Yuan, Zhongke
    Yang, Meijia
    Chen, Guojian
    Yu, Dingshan
    Zhang, Mingqiu
    Hong, Wei
    Chen, Xudong
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (11) : 4642 - 4648
  • [33] Rational Integration of Photovoltaics for Solar Hydrogen Generation
    Beck, Fiona J.
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) : 6395 - 6403
  • [34] Solar hydrogen generation: Exceeding 100% efficiency
    Mikhail Zamkov
    Nature Energy, 2 (5)
  • [35] HYDROGEN PERMEATION IN SOLAR-ENERGY GENERATION
    GAMBELL, JW
    LABATON, I
    MANDELOVICI, AL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1988, 196 : 100 - COLL
  • [36] Solar Fuels. Photocatalytic Hydrogen Generation
    Kamat, Prashant V.
    Bisquert, Juan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (29): : 14873 - 14875
  • [37] Metal oxide heteronanostructures for solar hydrogen generation
    Vayssieres, Lionel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [38] Antenna molecule drives solar hydrogen generation
    Meyer, Gerald J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (30) : 9146 - 9147
  • [39] Hydrogen in the geological environment: features of generation and accumulation
    Filippova, D. S.
    SOCAR PROCEEDINGS, 2023, : 6 - 13
  • [40] Rationally Designed, Efficient, and Earth-Abundant Ni-Fe Cocatalysts for Solar Hydrogen Generation
    Tudu, Bijoy
    Nalajala, Naresh
    Reddy, Kasala Prabhakar
    Saikia, Pranjal
    Gopinath, Chinnakonda S.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (41) : 13915 - 13925