On the inversion of a generalized Radon transform of seismic type

被引:7
|
作者
Ustaoglu, Zekeriya [1 ]
机构
[1] Bulent Ecevit Univ, Fac Arts & Sci, Dept Math, TR-67100 Zonguldak, Turkey
关键词
Generalized Radon transform; Inversion formula; Numerical reconstruction;
D O I
10.1016/j.jmaa.2017.03.083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a generalized Radon transform (GRT) that integrates a function f (x(1), x(2)) on R-2 over a family of curves x(2) = u + s phi(x(1) - c) with respect to the variable x(1), for a real valued continuous function phi on R, u, s is an element of R and a fixed c is an element of R. We investigate the inversion of the GRT via the inversion of the regular Radon transform (RT). Depending on some conditions on f and phi, we obtain some inversion formulas and also describe a method for the numerical reconstruction of f from its GRT. Numerical results are presented to demonstrate the feasibility of the proposed method. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:287 / 303
页数:17
相关论文
共 50 条
  • [21] Seismic inversion with generalized Radon transform based on local second-order approximation of scattered field in acoustic media
    Wei Ouyang
    Weijian Mao
    Xuelei Li
    Wuqun Li
    Earthquake Science, 2014, 27 (04) : 433 - 439
  • [22] Generalized radon transform
    Roopkumar, R.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2006, 36 (04) : 1375 - 1390
  • [23] Inversion of the Radon transform associated with the classical domain of type one
    He, JX
    Liu, HP
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2005, 16 (08) : 875 - 887
  • [24] NUMERICAL INVERSION OF RADON TRANSFORM
    NATTERER, F
    NUMERISCHE MATHEMATIK, 1978, 30 (01) : 81 - 91
  • [25] Iterative inversion of the radon transform
    Sahiner, B
    Yagle, AE
    IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 1996, 15 (05): : 112 - 117
  • [26] On the Inversion of the xfct Radon Transform
    Miqueles, Eduardo X.
    De Pierro, Alvaro Rodolfo
    STUDIES IN APPLIED MATHEMATICS, 2011, 127 (04) : 394 - 419
  • [27] INVERSION OF THE ATTENUATED RADON TRANSFORM
    NATTERER, F
    NUMERISCHE MATHEMATIK, 1979, 32 (04) : 431 - 438
  • [28] Nonstability of the inversion of the radon transform
    Zaitsev A.Yu.
    Journal of Mathematical Sciences, 1998, 88 (1) : 53 - 58
  • [29] Inversion of the attenuated Radon transform
    Natterer, P
    INVERSE PROBLEMS, 2001, 17 (01) : 113 - 119
  • [30] Inversion of Higher Dimensional Radon Transforms of Seismic-Type
    Chihara, Hiroyuki
    VIETNAM JOURNAL OF MATHEMATICS, 2021, 49 (04) : 1185 - 1198