Gradual internal reforming of ethanol in solid oxide fuel cells

被引:6
|
作者
Nobrega, S. D. [1 ]
Fonseca, F. C. [1 ]
Gelin, P.
Noronha, F. B.
Georges, S.
Steil, M. C.
机构
[1] IPEN, BR-05508000 Sao Paulo, Brazil
关键词
Ceria-based catalytic layer; Gradual internal reforming; Ethanol; Optimisation; METHANE; SOFC; ANODE; CATALYSTS; HYDROGEN; NI;
D O I
10.1016/j.egypro.2012.08.037
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electrolyte (yttria-stabilised zirconia, YSZ) supported solid oxide fuel cells (SOFCs) were fabricated using spin coating of standard LSM cathode and Ni-YSZ cermet anode. A ceria-based catalytic layer was deposited onto the anode with a special current collector design. Such a single cell configuration allows operation by gradual internal reforming of direct carbon-containing fuels. First, the fabricated single cells were operated with hydrogen to determine the optimised conditions of fuel concentration and flow rate regarding faradaic efficiency. Then, the fuel was switched to dry ethanol and the cells were operated for several hours (100 h) with good stability. Post-operation electron microcopy analyses revealed no carbon formation in the anode layer. The results indicate that the gradual internal reforming mechanism is effective, opening up the way to multi-fuel SOFCs, provided that a suitable catalyst layer and cell design are available. (C) 2012 Published by Elsevier Ltd.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 50 条
  • [41] Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas
    Colpan, C. Ozgur
    Dincer, Ibrahim
    Hamdullahpur, Feridun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (07) : 787 - 795
  • [42] A review on mathematical modelling of Direct Internal Reforming- Solid Oxide Fuel Cells
    Faheem, Hafiz Hamza
    Abbas, Syed Zaheer
    Tabish, Asif Nadeem
    Fan, Liyuan
    Maqbool, Fahad
    JOURNAL OF POWER SOURCES, 2022, 520
  • [43] Thermal and electrochemical model of internal reforming solid oxide fuel cells with tubular geometry
    Sanchez, D.
    Chacartegui, R.
    Munoz, A.
    Sanchez, T.
    JOURNAL OF POWER SOURCES, 2006, 160 (02) : 1074 - 1087
  • [44] TEMPERATURE INFLUENCE ON INTERNAL REFORMING AND METHANE DIRECT OXIDATION IN SOLID OXIDE FUEL CELLS
    Baikov, Igor Ravilevich
    Smorodova, Olga Viktorovna
    Kitaev, Sergei Vladimirovich
    Yerilin, Ivan Sergeevich
    NANOTECHNOLOGIES IN CONSTRUCTION-A SCIENTIFIC INTERNET-JOURNAL, 2018, 10 (04): : 120 - 137
  • [45] Effect of hydrogen sulfide on the direct internal reforming of methane in solid oxide fuel cells
    Smith, Tyler R.
    Wood, Anthony
    Birss, Viola I.
    APPLIED CATALYSIS A-GENERAL, 2009, 354 (1-2) : 1 - 7
  • [46] Internal Reforming Solid Oxide Fuel Cell System Operating under Direct Ethanol Feed Condition
    Elharati, Mohamed A.
    Dewa, Martinus
    Bkour, Qusay
    Hussain, A. Mohammed
    Miura, Yohei
    Dong, Song
    Fukuyama, Yosuke
    Dale, Nilesh
    Marin-Flores, Oscar G.
    Ha, Su
    ENERGY TECHNOLOGY, 2020, 8 (09)
  • [47] Performance of an anode-supported solid oxide fuel cell with direct-internal reforming of ethanol
    Arpornwichanop, Amornchai
    Chalermpanchai, Nuttapong
    Patcharavorachot, Yaneeporn
    Assabumrungrat, Suttichai
    Tade, Moses
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (18) : 7780 - 7788
  • [48] Modelling of an indirect internal reforming solid oxide fuel cell
    Aguiar, P
    Chadwick, D
    Kershenbaum, L
    CHEMICAL ENGINEERING SCIENCE, 2002, 57 (10) : 1665 - 1677
  • [49] Internal reforming of methane in solid oxide fuel cell systems
    Peters, R
    Dahl, R
    Klüttgen, U
    Palm, C
    Stolten, D
    JOURNAL OF POWER SOURCES, 2002, 106 (1-2) : 238 - 244
  • [50] Shape Control of Ceria Catalytic Supports for Enhanced Ethanol Reforming in Solid Oxide Fuel Cells
    Machado, Marina
    Rodrigues, Lays N.
    Vilela, Vanessa B.
    Moraes, Tamara S.
    Ferlauto, Andre S.
    Fonseca, Fabio C.
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (05) : 1766 - 1776