Probability Distributions of Natural Frequencies of Uncertain Dynamic Systems

被引:10
|
作者
Rahman, Sharif [1 ]
机构
[1] Univ Iowa, Dept Mech & Ind Engn, Seamans Ctr 2140, Iowa City, IA 52242 USA
基金
美国国家科学基金会;
关键词
RANDOM EIGENVALUE PROBLEM; DIMENSIONAL DECOMPOSITION;
D O I
10.2514/1.42720
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This article presents a polynomial dimensional decomposition method for calculating the probability distributions of random eigenvalues commonly encountered in dynamic systems. The method involves a hierarchical decomposition of a multivariate function in terms of variables with increasing dimensions, a broad range of orthonormal polynomial bases consistent with the probability measure for a Fourier-polynomial expansion of component functions, and an innovative dimension-reduction integration for calculating the expansion coefficients. The new decomposition does not require sample points, yet it generates a convergent sequence of lower-variate estimates of the probability distributions of eigensolutions. Numerical results, including frequency distributions of a piezoelectric transducer, indicate that the decomposition method developed provides accurate, convergent, and computationally efficient estimates of the tail probabilistic characteristics of eigenvalues.
引用
收藏
页码:1579 / 1589
页数:11
相关论文
共 50 条
  • [41] Dimensionality reduction for uncertain dynamic systems
    Kenny, Sean
    Crespo, Luis
    Giesy, Dan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (6-7) : 767 - 788
  • [42] On stabilization of uncertain dynamic nonholonomic systems
    Dong, WJ
    Xu, YS
    Huo, W
    INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (04) : 349 - 359
  • [43] PROBABILITY-DISTRIBUTIONS FOR MULTICOMPONENT SYSTEMS WITH MULTIPLICATIVE NOISE
    DEUTSCH, JM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1994, 208 (3-4) : 445 - 461
  • [44] Probability distributions and Hilbert spaces: Quantum and classical systems
    Man'ko, V.I.
    Marmo, G.
    Physica Scripta, 60 (02): : 111 - 116
  • [45] An Incremental Probability Model for Dynamic Systems
    Kohn, Wolf
    Placek, Philip C.
    Zabinsky, Zelda B.
    Cross, Jonathan
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (06): : 2083 - 2092
  • [46] Stationary probability distributions for FitzHugh-Nagumo systems
    Kostur, M
    Sailer, X
    Schimansky-Geier, L
    FLUCTUATION AND NOISE LETTERS, 2003, 3 (02): : L155 - L166
  • [47] Probability distributions and Hilbert spaces: Quantum and classical systems
    Man'ko, VI
    Marmo, G
    PHYSICA SCRIPTA, 1999, 60 (02) : 111 - 116
  • [48] An iterative method for propagation of probability distributions in feedback systems
    Varigonda, S
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 1803 - 1805
  • [49] SCALING PROPERTIES OF PROBABILITY DISTRIBUTIONS IN DISORDERED SYSTEMS.
    Shapiro, Boris
    Philosophical Magazine B: Physics of Condensed Matter; Electronic, Optical and Magnetic Properties, 1987, 56 (06): : 1031 - 1044
  • [50] Particle filtering for systems with unknown noise probability distributions
    Míguez, J
    Xu, S
    Bugallo, MF
    Djuric, PM
    PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 522 - 525