Upwind finite volume schemes in timedependent geometries

被引:0
|
作者
Wierse, M
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We developed a new numerical algorithm to solve the non-stationary compressible Euler equations in three dimensional geometries with a moving boundary. The numerical algorithm consists of a new cell-centered upwind finite volume scheme of higher order on a grid of simplices and the possibility to refine and to coarse the grid locally according to the approximated solution. Furthermore a new criterion based on local residuals to control the refinement and coarsening process is used. In this paper we will concentrate on the new technique we used to model the boundary (piston) motion in a conservative way. More details of the higher order scheme, the local adaption and the modelling of the piston motion can be found in the author's PhD thesis.
引用
收藏
页码:25 / 28
页数:4
相关论文
共 50 条
  • [31] Analysis of the implicit upwind finite volume scheme with rough coefficients
    Schlichting, Andre
    Seis, Christian
    NUMERISCHE MATHEMATIK, 2018, 139 (01) : 155 - 186
  • [32] Analysis of the implicit upwind finite volume scheme with rough coefficients
    André Schlichting
    Christian Seis
    Numerische Mathematik, 2018, 139 : 155 - 186
  • [33] An upwind discretization scheme for the finite volume lattice Boltzmann method
    Stiebler, Maik
    Toelke, Jonas
    Krafczyk, Manfred
    COMPUTERS & FLUIDS, 2006, 35 (8-9) : 814 - 819
  • [34] Dynamically adaptive upwind finite volume methods for contaminant transport
    Dawson, C
    Bryant, S
    Kirby, R
    COMPUTATIONAL METHODS IN SURFACE AND GROUND WATER TRANSPORT: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL METHODS IN WATER RESOURCES, VOL 2, 1998, 12 : 641 - 648
  • [35] A NEW FINITE-VOLUME APPROACH WITH ADAPTIVE UPWIND CONVECTION
    KINNEY, RB
    MAHDI, HS
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1988, 26 (06) : 1325 - 1343
  • [36] COMPACT FINITE VOLUME SCHEMES AND THEIR APPLICATIONS
    Ju Hongbin (School of Power and Energy Engineering
    Chinese Journal of Aeronautics , 1997, (04) : 18 - 25
  • [37] FINITE VOLUME SCHEMES ON LORENTZIAN MANIFOLDS
    Amorim, Paulo
    LeFloch, Philippe E.
    Okutmustur, Baver
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2008, 6 (04) : 1059 - 1086
  • [38] ANALYSIS TOOLS FOR FINITE VOLUME SCHEMES
    Eymard, R.
    Gallouet, T.
    Herbin, R.
    Latche, J. -C.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2007, 76 (01): : 111 - 136
  • [39] Finite volume schemes for multilayer diffusion
    March, Nathan G.
    Carr, Elliot J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 : 206 - 223
  • [40] Lax theorem and finite volume schemes
    Despres, B
    MATHEMATICS OF COMPUTATION, 2004, 73 (247) : 1203 - 1234