Data-driven construction of a reduced-order model for supersonic boundary layer transition

被引:25
|
作者
Yu, Ming [1 ]
Huang, Wei-Xi [1 ]
Xu, Chun-Xiao [1 ]
机构
[1] Tsinghua Univ, Dept Engn Mech, Key Lab Appl Mech AML, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
compressible boundary layers; low-dimensional models; transition to turbulence; DIRECT NUMERICAL-SIMULATION; REDUCTION; REPRESENTATION; DECOMPOSITION; FLOWS; WALL;
D O I
10.1017/jfm.2019.470
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study, a data-driven method for the construction of a reduced-order model (ROM) for complex flows is proposed. The method uses the proper orthogonal decomposition (POD) modes as the orthogonal basis and the dynamic mode decomposition method to obtain linear equations for the temporal evolution coefficients of the modes. This method eliminates the need for the governing equations of the flows involved, and therefore saves the effort of deriving the projected equations and proving their consistency, convergence and stability, as required by the conventional Galerkin projection method, which has been successfully applied to incompressible flows but is hard to extend to compressible flows. Using a sparsity-promoting algorithm, the dimensionality of the ROM is further reduced to a minimum. The ROMs of the natural and bypass transitions of supersonic boundary layers at $Ma=2.25$ are constructed by the proposed data-driven method. The temporal evolution of the POD modes shows good agreement with that obtained by direct numerical simulations in both cases.
引用
收藏
页码:1096 / 1114
页数:19
相关论文
共 50 条
  • [41] Physics-informed data-driven reduced-order models for Dynamic Induction Control
    Muscari, Claudia
    Schito, Paolo
    Vire, Axelle
    Zasso, Alberto
    van Wingerden, Jan-Willem
    IFAC PAPERSONLINE, 2023, 56 (02): : 8414 - 8419
  • [42] Verifiability of the Data-Driven Variational Multiscale Reduced Order Model
    Koc, Birgul
    Mou, Changhong
    Liu, Honghu
    Wang, Zhu
    Rozza, Gianluigi
    Iliescu, Traian
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (02)
  • [43] Verifiability of the Data-Driven Variational Multiscale Reduced Order Model
    Birgul Koc
    Changhong Mou
    Honghu Liu
    Zhu Wang
    Gianluigi Rozza
    Traian Iliescu
    Journal of Scientific Computing, 2022, 93
  • [44] Robust reduced-order controller of laminar boundary layer transitions
    Cortelezzi, L
    Speyer, JL
    PHYSICAL REVIEW E, 1998, 58 (02) : 1906 - 1910
  • [45] A novel data-driven reduced-order model for the fast prediction of gas-solid heat transfer in fluidized beds
    Li, Xiaofei
    Xu, Qilong
    Wang, Shuai
    Luo, Kun
    Fan, Jianren
    APPLIED THERMAL ENGINEERING, 2024, 253
  • [46] Efficient data-driven reduced-order models for high-dimensional multiscale dynamical systems
    Chakraborty, Souvik
    Zabaras, Nicholas
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 230 : 70 - 88
  • [47] Data-driven reduced order modeling of a two-layer quasi-geostrophic ocean model
    Besabe, Lander
    Girfoglio, Michele
    Quaini, Annalisa
    Rozza, Gianluigi
    RESULTS IN ENGINEERING, 2025, 25
  • [48] Data-driven reduced-order modelling for blood flow simulations with geometry-informed snapshots
    Ye, Dongwei
    Krzhizhanovskaya, Valeria
    Hoekstra, Alfons G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 497
  • [49] Gradient preserving Operator Inference: Data-driven reduced-order models for equations with gradient structure
    Geng, Yuwei
    Singh, Jasdeep
    Ju, Lili
    Kramer, Boris
    Wang, Zhu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 427
  • [50] Hierarchical deep learning for data-driven identification of reduced-order models of nonlinear dynamical systems
    Li, Shanwu
    Yang, Yongchao
    NONLINEAR DYNAMICS, 2021, 105 (04) : 3409 - 3422