The radial phase variation of reversed-shear and toroidicity-induced Alfven eigenmodes in DIII-D

被引:6
|
作者
Heidbrink, W. W. [1 ]
Hansen, E. C. [1 ,2 ]
Austin, M. E. [2 ]
Kramer, G. J. [3 ]
Van Zeeland, M. A. [4 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92697 USA
[2] Univ Texas Austin, Austin, TX 78712 USA
[3] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[4] Gen Atom, San Diego, CA USA
关键词
Alfven eigenmodes; energetic particles; wave phase;
D O I
10.1088/1741-4326/ac5109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The eigenfunction of an instability contains information about energy flow in the wave. In this study, the amplitude and phase of electron cyclotron emission radiometer data from hundreds of DIII-D reversed shear Alfven eigenmodes (RSAE) and toroidicity-induced Alfven eigenmodes (TAE) are analyzed along the outboard horizontal midplane. The radial phase profile can be flat, linearly rising or falling, convex or concave; in other words, a wide variety of shapes is observed. For a particular mode, often the radial phase profile remains approximately constant as the mode evolves in time but sometimes it changes rapidly. Many TAEs and some RSAEs have phase profiles that are rather flat where the mode amplitude is largest but rise steadily by similar to 2 pi at large major radius. Rapid phase changes are observed when the frequencies of an RSAE and TAE overlap and the modes couple. The phase profile depends weakly on the fast-ion gradient that would appear in the absence of wave-induced transport. Linear and quadratic fits to the phase profiles, together with many plasma parameters, are assembled into RSAE and TAE databases. In both cases, large variability is observed. For RSAEs, the strongest phase dependencies are on electron temperature T-e, RSAE mode frequency, and the density of carbon impurities. For TAEs, the strongest dependencies are on beam power and major radius of the mode. In general, the average RSAE radial phase profile is essentially flat but the TAE profile has non-zero slope and curvature.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Stability of beta-induced Alfven eigenmodes (BAE) in DIII-D
    Heidbrink, W. W.
    Van Zeeland, M. A.
    Austin, M. E.
    Crocker, N. A.
    Du, X. D.
    McKee, G. R.
    Spong, D. A.
    NUCLEAR FUSION, 2021, 61 (06)
  • [22] Excitation of toroidicity-induced alfven eigenmodes by the electrodes inserted in a heliotron/torsatron plasma
    Matsunaga, G
    Toi, K
    Kawada, S
    Kotani, J
    Suzuki, C
    Matsuoka, K
    PHYSICAL REVIEW LETTERS, 2005, 94 (22)
  • [23] OBSERVATION OF BETA-INDUCED ALFVEN EIGENMODES IN THE DIII-D TOKAMAK
    HEIDBRINK, WW
    STRAIT, EJ
    CHU, MS
    TURNBULL, AD
    PHYSICAL REVIEW LETTERS, 1993, 71 (06) : 855 - 858
  • [24] Study of chirping toroidicity-induced Alfven eigenmodes in the National Spherical Torus Experiment
    Podesta, M.
    Bell, R. E.
    Bortolon, A.
    Crocker, N. A.
    Darrow, D. S.
    Diallo, A.
    Fredrickson, E. D.
    Fu, G. -Y.
    Gorelenkov, N. N.
    Heidbrink, W. W.
    Kramer, G. J.
    Kubota, S.
    LeBlanc, B. P.
    Medley, S. S.
    Yuh, H.
    NUCLEAR FUSION, 2012, 52 (09)
  • [25] The toroidicity-induced Alfven eigenmode structure in DIII-D: Implications of soft x-ray and beam-ion loss data
    Carolipio, EM
    Heidbrink, WW
    Cheng, CZ
    Chu, MS
    Fu, GY
    Jaun, A
    Spong, DA
    Turnbull, AD
    White, RB
    PHYSICS OF PLASMAS, 2001, 8 (07) : 3391 - 3401
  • [26] Collisionless dissipation of the toroidicity-induced Alfven eigenmodes in elongated tokamaks by the trapped and untrapped electrons
    Grishanov, NI
    da Silva, CE
    de Azevedo, CA
    de Assis, AS
    PHYSICA SCRIPTA, 2001, 63 (01): : 47 - 53
  • [27] Central flattening of the fast-ion profile in reversed-shear DIII-D discharges
    Heidbrink, W. W.
    Van Zeeland, M. A.
    Austin, M. E.
    Burrell, K. H.
    Gorelenkov, N. N.
    Kramer, G. J.
    Luo, Y.
    Makowski, M. A.
    McKee, G. R.
    Muscatello, C.
    Nazikian, R.
    Ruskov, E.
    Solomon, W. M.
    White, R. B.
    Zhu, Y.
    NUCLEAR FUSION, 2008, 48 (08)
  • [28] Stability of toroidicity induced shear Alfven eigenmodes in ASDEX Upgrade
    Sassenberg, K.
    Maraschek, M.
    Mc Carthy, P. J.
    Zohm, H.
    Bilato, R.
    Bobkov, W.
    Da Graca, S.
    Flaws, A.
    Garcia-Munoz, M.
    Guenter, S.
    Igochine, V.
    Lauber, P.
    Mantsinen, M. J.
    Piovesan, P.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (06)
  • [29] Fast particle destabilization of toroidicity-induced Alfven eigenmodes in the National Spherical Torus Experiment
    Gorelenkov, NN
    Cheng, CZ
    Fu, GY
    Kaye, S
    White, R
    Gorelenkova, MV
    PHYSICS OF PLASMAS, 2000, 7 (05) : 1433 - 1436
  • [30] STABILITY ANALYSIS OF TOROIDICITY-INDUCED ALFVEN EIGENMODES IN TFTR DEUTERIUM-TRITIUM EXPERIMENTS
    FU, GY
    CHENG, CZ
    BUDNY, R
    CHANG, Z
    DARROW, DS
    FREDRICKSON, E
    MAZZUCATO, E
    NAZIKIAN, R
    ZWEBEN, S
    PHYSICAL REVIEW LETTERS, 1995, 75 (12) : 2336 - 2339