The commutators of fractional integrals on Besov spaces

被引:1
|
作者
Chen, WG
Lu, SZ
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
commutator; paraproduct; Besov space;
D O I
10.1007/s10114-004-0330-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the commutators of fractional integrals integral(Rn) b(x) - b(y)/x - y\(n-alpha)f(y)dy on the Besov spaces (B) over dot(p)(s,q), where b is a locally integrable function and 0 < alpha < n. We first establish the equivalence between the boundedness of the commutators and the paraproduct of J. M. Bony. Then we obtain two conditions on the boundedness of the commutators. One of these conditions is necessary and the other is sufficient.
引用
收藏
页码:405 / 414
页数:10
相关论文
共 50 条
  • [31] On Sobolev theorem for higher commutators of fractional integrals in grand variable Herz spaces
    Sultan, Babar
    Sultan, Mehvish
    Khan, Ilyas
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 126
  • [32] Multilinear commutators of fractional integrals over Morrey spaces with non-doubling measures
    Tao, Xiangxing
    Zheng, Taotao
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (03): : 287 - 308
  • [33] COMMUTATORS GENERATED BY BMO-FUNCTIONS AND THE FRACTIONAL INTEGRALS ON ORLICZ-MORREY SPACES
    Iida, Takeshi
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2023, 26 (03): : 655 - 683
  • [34] BESOV-SPACES, SOBOLEV SPACES, AND CAUCHY INTEGRALS
    AHERN, P
    COHN, W
    MICHIGAN MATHEMATICAL JOURNAL, 1992, 39 (02) : 239 - 261
  • [35] Boundedness for Higher Order Commutators of Fractional Integrals on Variable Exponent Herz–Morrey Spaces
    Jiang-Long Wu
    Wen-Jiao Zhao
    Mediterranean Journal of Mathematics, 2017, 14
  • [36] Multilinear commutators of fractional integrals over Morrey spaces with non-doubling measures
    Xiangxing Tao
    Taotao Zheng
    Nonlinear Differential Equations and Applications NoDEA, 2011, 18 : 287 - 308
  • [37] Commutators of parabolic fractional integrals with variable kernels in vanishing generalized variable Morrey spaces
    Ekincioglu, I
    Khaligova, S. Z.
    Serbetci, A.
    POSITIVITY, 2022, 26 (05)
  • [38] GENERALIZED FRACTIONAL INTEGRALS AND THEIR COMMUTATORS OVER NON-HOMOGENEOUS METRIC MEASURE SPACES
    Fu, Xing
    Yang, Dachun
    Yuan, Wen
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (02): : 509 - 557
  • [39] Commutators of parabolic fractional integrals with variable kernels in vanishing generalized variable Morrey spaces
    I. Ekincioglu
    S. Z. Khaligova
    A. Serbetci
    Positivity, 2022, 26
  • [40] Commutators of homogeneous fractional integrals on Herz-type Hardy spaces with variable exponent
    Hongbin Wang
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2017, 52 : 134 - 143