Scalable Machine Learning Approaches for Neighborhood Classification Using Very High Resolution Remote Sensing Imagery

被引:9
|
作者
Sethi, Manu [1 ]
Yan, Yupeng [1 ]
Rangarajan, Anand [1 ]
Vatsavai, Ranga Raju [2 ,3 ]
Ranka, Sanjay [1 ]
机构
[1] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
[2] NC State Univ, Raleigh, NC 27695 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN USA
基金
美国国家科学基金会;
关键词
Remote Sensing; Segmentation; Neighborhoods; CUTS;
D O I
10.1145/2783258.2788625
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Urban neighborhood classification using very high resolution (VHR) remote sensing imagery is a challenging and emerging application. A semi-supervised learning approach for identifying neighborhoods is presented which employs superpixel tessellation representations of VHR imagery. The image representation utilizes homogeneous and irregularly shaped regions termed superpixels and derives novel features based on intensity histograms, geometry, corner and superpixel density and scale of tessellation. The semi-supervised learning approach uses a support vector machine (SVM) to obtain a preliminary classification which is then subsequently refined using graph Laplacian propagation. Several intermediate stages in the pipeline are presented to showcase the important features of this approach. We evaluated this approach on four different geographic settings with varying neighborhood types and compared it with the recent Gaussian Multiple Learning algorithm. This evaluation shows several advantages, including model building, accuracy, and efficiency which makes it a great choice for deployment in large scale applications like global human settlement mapping and population distribution (e.g., LandScan), and change detection.
引用
收藏
页码:2069 / 2078
页数:10
相关论文
共 50 条
  • [41] Continual learning for scene classification of high resolution remote sensing images
    Xi, Jiangbo
    Yan, Ziyun
    Jiang, Wandong
    Xiang, Yaobing
    Xie, Dashuai
    TWELFTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS (CIOP 2021), 2021, 12057
  • [42] Support Vector Machine for classification of hyperspectral remote sensing imagery
    Dai, Chen-guang
    Huang, Xiao-bo
    Dong, Guang-jun
    FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 4, PROCEEDINGS, 2007, : 77 - 80
  • [43] ACTIVE LEARNING APPROACH FOR REMOTE SENSING IMAGERY CLASSIFICATION USING SPATIAL INFORMATION
    Shi, Qian
    Huang, Xin
    Li, Jiayi
    Zhang, Liangpei
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1520 - 1523
  • [44] Pixel-Wise Classification Method for High Resolution Remote Sensing Imagery Using Deep Neural Networks
    Guo, Rui
    Liu, Jianbo
    Li, Na
    Liu, Shibin
    Chen, Fu
    Cheng, Bo
    Duan, Jianbo
    Li, Xinpeng
    Ma, Caihong
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (03)
  • [45] A Very High Resolution Satellite Imagery Classification Algorithm
    Shedlovska, Y. I.
    Hnatushenko, V. V.
    2018 IEEE 38TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2018, : 654 - 657
  • [46] Ensemble Learning Approaches Based on Covariance Pooling of CNN Features for High Resolution Remote Sensing Scene Classification
    Akodad, Sara
    Bombrun, Lionel
    Xia, Junshi
    Berthoumieu, Yannick
    Germain, Christian
    REMOTE SENSING, 2020, 12 (20) : 1 - 19
  • [47] COMPRESSIVE SENSING BASED RECONSTRUCTION AND PIXEL-LEVEL CLASSIFICATION OF VERY HIGH-RESOLUTION DISASTER SATELLITE IMAGERY USING DEEP LEARNING
    Shinde, Rajat C.
    Potnis, Abhishek, V
    Durbha, Surya S.
    Andugula, Prakash
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2639 - 2642
  • [48] MULTISPECTRAL CLASSIFICATION OF REMOTE SENSING IMAGERY FOR ARCHAEOLOGICAL LAND USE ANALYSIS WITH MACHINE LEARNING TECHNIQUES
    Villalon-Turrubiates, Ivan E.
    De-la-Torre, Miguel
    Llovera-Torres, Maria J.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7253 - 7256
  • [49] Remote sensing based forest cover classification using machine learning
    Aziz, Gouhar
    Minallah, Nasru
    Saeed, Aamir
    Frnda, Jaroslav
    Khan, Waleed
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [50] HISTOGRAM BASED ATTRIBUTE PROFILES FOR CLASSIFICATION OF VERY HIGH RESOLUTION REMOTE SENSING IMAGES
    Demir, Beguem
    Bruzzone, Lorenzo
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2393 - 2396