Regular Bipartite Graphs Are Antimagic

被引:54
|
作者
Cranston, Daniel W. [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
关键词
antimagic graph labeling; bipartite graph; regular graph; graph decomposition; Marriage Theorem;
D O I
10.1002/jgt.20347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A labeling of a graph G is a bijection from E(G) to the set {1, 2, ... , vertical bar E(G)vertical bar}. A labeling is antimagic if for any distinct vertices u and v, the sum of the labels on edges incident to u is different from the sum of the labels on edges incident to v. We say a graph is antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel conjectured that every connected graph other than K-2 is antimagic. In this article, we show that every regular bipartite graph (with degree at least 2) is antimagic. Our technique relies heavily on the Marriage Theorem. (c) 2008 Wiley Periodicals Inc. J Graph Theory 60: 173-192, 2009
引用
收藏
页码:173 / 182
页数:10
相关论文
共 50 条
  • [21] DECOMPOSITIONS OF REGULAR BIPARTITE GRAPHS
    JACOBSON, MS
    TRUSZCZYNSKI, M
    TUZA, Z
    DISCRETE MATHEMATICS, 1991, 89 (01) : 17 - 27
  • [22] Reflexive bipartite regular graphs
    Koledin, Tamara
    Stanić, Zoran
    Linear Algebra and Its Applications, 2014, 442 : 145 - 155
  • [23] Construction of Antimagic Labeling for the Cartesian Product of Regular Graphs
    Phanalasy, Oudone
    Miller, Mirka
    Iliopoulos, Costas S.
    Pissis, Solon P.
    Vaezpour, Elaheh
    MATHEMATICS IN COMPUTER SCIENCE, 2011, 5 (01) : 81 - 87
  • [24] BIPARTITE REGULAR GRAPHS AND SHORTNESS PARAMETERS
    OWENS, PJ
    DISCRETE MATHEMATICS, 1985, 55 (01) : 101 - 106
  • [25] Online Matching in Regular Bipartite Graphs
    Barriere, Lali
    Munoz, Xavier
    Fuchs, Janosch
    Unger, Walter
    PARALLEL PROCESSING LETTERS, 2018, 28 (02)
  • [26] A MATCHING ALGORITHM FOR REGULAR BIPARTITE GRAPHS
    CSIMA, J
    LOVASZ, L
    DISCRETE APPLIED MATHEMATICS, 1992, 35 (03) : 197 - 203
  • [27] Perfect matchings in regular bipartite graphs
    Katerinis, P
    Tsikopoulos, N
    GRAPHS AND COMBINATORICS, 1996, 12 (04) : 327 - 331
  • [28] Regular bipartite graphs and intersecting families
    Kupavskii, Andrey
    Zakharov, Dmitriy
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 155 : 180 - 189
  • [29] Perfect Matchings of Regular Bipartite Graphs
    Lukot'ka, Robert
    Rollova, Edita
    JOURNAL OF GRAPH THEORY, 2017, 85 (02) : 525 - 532
  • [30] The metric dimension of regular bipartite graphs
    Baca, M.
    Baskoro, E. T.
    Salman, A. N. M.
    Saputro, S. W.
    Suprijanto, D.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2011, 54 (01): : 15 - 28