Symplectic integration schemes for the ABC flow

被引:2
|
作者
Tippett, MK
机构
[1] Max-Planck-Inst. F. Plasmaphysik, Euratom Association
关键词
numerical integration; Hamilton's equations; ABC flow;
D O I
10.1007/BF02238358
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Explicit symplectic integration schemes for the Arnold-Beltrami-Childress flows are presented and compared to a fourth order Runge-Kutta method. For moderate accuracy the symplectic schemes are more efficient for the calculation of stable orbits. The structure of the Hamiltonian prevents the implementation of symplectic methods with constant time steps.
引用
收藏
页码:63 / 75
页数:13
相关论文
共 50 条
  • [41] Efficient symplectic integration of satellite orbits
    Mikkola, S
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1999, 74 (04): : 275 - 285
  • [42] SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS
    CHANNELL, PJ
    SCOVEL, C
    NONLINEARITY, 1990, 3 (02) : 231 - 259
  • [43] Symplectic integration of learned Hamiltonian systems
    Offen, C.
    Ober-Bloebaum, S.
    CHAOS, 2022, 32 (01)
  • [44] Efficient Symplectic Integration of Satellite Orbits
    Seppo Mikkola
    Celestial Mechanics and Dynamical Astronomy, 1999, 74 : 275 - 285
  • [45] Symplectic integration of nonlinear Hamiltonian systems
    Rangarajan, G
    PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (01): : 129 - 142
  • [46] Symplectic Integration for Optimal Ergodic Control
    Prabhakar, Ahalya
    Flasskamp, Kathrin
    Murphey, Todd D.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 2594 - 2600
  • [47] Symplectic integration approach for metastable systems
    Klotins, E
    EUROPEAN PHYSICAL JOURNAL B, 2006, 50 (1-2): : 315 - 320
  • [48] Symplectic integration of nonlinear Hamiltonian systems
    Govindan Rangarajan
    Pramana, 1997, 48 : 129 - 142
  • [49] Symplectic integration of boundary value problems
    Robert I. McLachlan
    Christian Offen
    Numerical Algorithms, 2019, 81 : 1219 - 1233
  • [50] Contour dynamics with symplectic time integration
    Dept. of Math. and Computing Science, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
    不详
    J. Comput. Phys., 2 (222-234):