Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors

被引:170
|
作者
Tchernycheva, M. [1 ]
Messanvi, A. [1 ,2 ]
Bugallo, A. de Luna [1 ]
Jacopin, G. [1 ]
Lavenus, P. [1 ]
Rigutti, L. [1 ,3 ,4 ]
Zhang, H. [1 ]
Halioua, Y. [1 ]
Julien, F. H. [1 ]
Eymery, J. [2 ]
Durand, C. [2 ]
机构
[1] Univ Paris 11, UMR CNRS 8622, Inst Elect Fondamentale, F-91405 Orsay, France
[2] Univ Grenoble 1, CNRS, CEA, INAC,SP2M, F-38054 Grenoble 9, France
[3] Univ Rouen, Normandie Univ, UMR CNRS 6634, Grp Phys Mat, F-76801 St Etienne Du Rouvray, France
[4] INSA Rouen, F-76801 St Etienne Du Rouvray, France
关键词
InGaN/GaN nanowires; integrated photonic platform; light-emitting diode; photodetector; SiN waveguide; MOVPE; LIGHT-EMITTING-DIODES; MULTIPLE-QUANTUM-WELLS; SEMICONDUCTOR NANOWIRES; NANOROD ARRAYS; WAVE-GUIDES; ON-CHIP; HETEROSTRUCTURES;
D O I
10.1021/nl501124s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the fabrication of a photonic platform consisting of single wire light-emitting diodes (LED) and photodetectors optically coupled by waveguides. MOVPE-grown (metal-organic vapor-phase epitaxy) InGaN/GaN p-n junction core-shell nanowires have been used for device fabrication. To achieve a good spectral matching between the emission wavelength and the detection range, different active regions containing either five narrow InGaN/GaN quantum wells or one wide InGaN segment were employed for the LED and the detector, respectively. The communication wavelength is similar to 400 nm. The devices are realized by means of electron beam lithography on Si/SiO2 templates and connected by similar to 100 mu m long nonrectilinear SiN waveguides. The photodetector current trace shows signal variation correlated with the LED on/off switching with a fast transition time below 0.5 s.
引用
收藏
页码:3515 / 3520
页数:6
相关论文
共 50 条
  • [31] Hybrid integrated photonic components based on a polymer platform
    Eldada, L
    PHOTONICS PACKAGING AND INTEGRATION III, 2003, 4997 : 88 - 102
  • [32] Growth of InGaN/GaN quantum wells with graded InGaN buffer for green-to-yellow light emitters
    Hu, Chia-Hsuan
    Lo, Ikai
    Hsu, Yu-Chi
    Shih, Cheng-Hung
    Pang, Wen-Yuan
    Wang, Ying-Chieh
    Lin, Yu-Chiao
    Yang, Chen-Chi
    Tsai, Cheng-Da
    Hsu, Gary Z. L.
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (08)
  • [33] III-V Photonic Circuits with Waveguide-Integrated LED Source and WSi Nanowire Detectors
    McDonald, C. A.
    Buckley, S. M.
    Nam, S. W.
    Mirin, R. P.
    Moody, G.
    Shainline, J. M.
    Silverman, K. L.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [34] Silicon-based InGaN/GaN Multiple Quantum Well Waveguide Directional Coupler Photonic Integrated Chip for Visible Light Communication
    Li Xin
    Li Yun
    Wang Xu
    Sha Yuanqing
    Jiang Chengwei
    Wang Yongjin
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (08) : 2695 - 2702
  • [35] GaN based light emitters
    Slyotov, M. M.
    Slyotov, O. M.
    Potsiluiko-Hryhoriak, H. V.
    Mazur, M. P.
    Mazur, T. M.
    PHYSICS AND CHEMISTRY OF SOLID STATE, 2024, 25 (02): : 297 - 302
  • [36] Monolithic InGaN/GaN photonic chips for heart pulse monitoring
    Chen, L.
    Wu, Y. P.
    Li, K. H.
    OPTICS LETTERS, 2020, 45 (18) : 4992 - 4995
  • [37] Concentration sensing system with monolithic InGaN/GaN photonic chips
    秦飞飞
    卢雪瑶
    陈杨
    高绪敏
    曹越
    张蕾
    卢俊峰
    王潇璇
    朱刚毅
    王永进
    Chinese Optics Letters, 2024, 22 (06) : 175 - 181
  • [38] Concentration sensing system with monolithic InGaN/GaN photonic chips
    Qin, Feifei
    Lu, Xueyao
    Chen, Yang
    Gao, Xumin
    Cao, Yue
    Zhang, Lei
    Lu, Junfeng
    Wang, Xiaoxuan
    Zhu, Gangyi
    Wang, Yongjin
    CHINESE OPTICS LETTERS, 2024, 22 (06)
  • [39] An InN/InGaN/GaN nanowire array guided wave photodiode on silicon
    Hazari, Arnab
    Baten, Md Zunaid
    Yan, Lifan
    Millunchick, Joanna M.
    Bhattacharya, Pallab
    APPLIED PHYSICS LETTERS, 2016, 109 (19)
  • [40] Understanding the p-Type GaN Nanocrystals on InGaN Nanowire Heterostructures
    Ra, Yong-Ho
    Lee, Cheul-Ro
    ACS PHOTONICS, 2019, 6 (10) : 2397 - 2404