Nonparametric goodness-of-fit

被引:16
|
作者
Swartz, T
机构
[1] Simon Fraser Univ, Dept Math & Stat, Burnaby, BC V5A 1S6, Canada
[2] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27706 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Monte Carlo; hypothesis testing; Dirichlet process; prior elicitation;
D O I
10.1080/03610929908832452
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops an approach to testing the adequacy of both classical:and Bayesian models given sample data. An important. feature of the approach is that we are able to test the practical scientific hypothesis of whether the true underlying model is-close to some hypothesized model. The notion of closeness is based on measurement precision anti requires the introduction of a metric for which we consider the Kolmogorov distance. The approach is nonparametric in the sense that the model under the alternative hypothesis is a:Dirichlet process.
引用
收藏
页码:2821 / 2841
页数:21
相关论文
共 50 条
  • [31] GOODNESS-OF-FIT PROBLEM FOR ERRORS IN NONPARAMETRIC REGRESSION: DISTRIBUTION FREE APPROACH
    Khmaladze, Estate V.
    Koul, Hira L.
    ANNALS OF STATISTICS, 2009, 37 (6A): : 3165 - 3185
  • [32] Goodness-of-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis
    Reynaud-Bouret, Patricia
    Rivoirard, Vincent
    Grammont, Franck
    Tuleau-Malot, Christine
    JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2014, 4 : 1 - 41
  • [33] APPLICATION OF NONPARAMETRIC KUIPER AND WATSON TESTS OF GOODNESS-OF-FIT FOR COMPOSITE HYPOTHESES
    Lemeshko, B. Yu.
    Gorbunova, A. A.
    MEASUREMENT TECHNIQUES, 2013, 56 (09) : 965 - 973
  • [34] An Empirical Analysis of Some Nonparametric Goodness-of-Fit Tests for Censored Data
    Balakrishnan, N.
    Chimitova, E.
    Vedernikova, M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (04) : 1101 - 1115
  • [35] Application and Power of the Nonparametric Kuiper,Watson, and Zhang Tests of Goodness-of-Fit
    B. Yu. Lemeshko
    A. A. Gorbunova
    Measurement Techniques, 2013, 56 : 465 - 475
  • [36] Frequentist nonparametric goodness-of-fit tests via marginal likelihood ratios
    Hart, Jeffrey D.
    Choi, Taeryon
    Yi, Seongbaek
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 96 : 120 - 132
  • [37] Nonparametric goodness-of-fit testing for parametric covariate models in pharmacometric analyses
    Hartung, Niklas
    Wahl, Martin
    Rastogi, Abhishake
    Huisinga, Wilhelm
    CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2021, 10 (06): : 564 - 576
  • [38] Application and Power of the Nonparametric Kuiper,Watson, and Zhang Tests of Goodness-of-Fit
    Lemeshko, B. Yu
    Gorbunova, A. A.
    MEASUREMENT TECHNIQUES, 2013, 56 (05) : 465 - 475
  • [39] UNIFORM CONVERGENCE OF A NONPARAMETRIC ESTIMATE OF POISSON REGRESSION WITH AN APPLICATION TO GOODNESS-OF-FIT
    Babilua P.
    Nadaraya E.
    Journal of Mathematical Sciences, 2024, 280 (3) : 410 - 418
  • [40] Using the dependent wild bootstrap for the nonparametric goodness-of-fit test for density functions
    Kim, Taeyoon
    Park, Cheolyong
    Ha, Jeongcheol
    Luo, Zhi-Ming
    Hwang, Sun Young
    STATISTICS, 2016, 50 (04) : 750 - 774