Nonparametric goodness-of-fit

被引:16
|
作者
Swartz, T
机构
[1] Simon Fraser Univ, Dept Math & Stat, Burnaby, BC V5A 1S6, Canada
[2] Duke Univ, Inst Stat & Decis Sci, Durham, NC 27706 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Monte Carlo; hypothesis testing; Dirichlet process; prior elicitation;
D O I
10.1080/03610929908832452
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops an approach to testing the adequacy of both classical:and Bayesian models given sample data. An important. feature of the approach is that we are able to test the practical scientific hypothesis of whether the true underlying model is-close to some hypothesized model. The notion of closeness is based on measurement precision anti requires the introduction of a metric for which we consider the Kolmogorov distance. The approach is nonparametric in the sense that the model under the alternative hypothesis is a:Dirichlet process.
引用
收藏
页码:2821 / 2841
页数:21
相关论文
共 50 条