A Posteriori Error Estimates with Computable Upper Bound for the Nonconforming Rotated Q1 Finite Element Approximation of the Eigenvalue Problems

被引:2
|
作者
Liu, Jie [1 ]
Xia, Tian [1 ]
Jiang, Wei [2 ]
机构
[1] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Peoples R China
[2] Xiamen Univ, Inst Electromagnet & Acoust, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2014/891278
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper discusses the nonconforming rotated Q(1) finite element computable upper bound a posteriori error estimate of the boundary value problem established by M. Ainsworth and obtains efficient computable upper bound a posteriori error indicators for the eigenvalue problem associated with the boundary value problem. We extend the a posteriori error estimate to the Steklov eigenvalue problem and also derive efficient computable upper bound a posteriori error indicators. Finally, through numerical experiments, we verify the validity of the a posteriori error estimate of the boundary value problem; meanwhile, the numerical results show that the a posteriori error indicators of the eigenvalue problem and the Steklov eigenvalue problem are effective.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] REDUCED BASIS APPROXIMATION AND A POSTERIORI ERROR ESTIMATES FOR PARAMETRIZED ELLIPTIC EIGENVALUE PROBLEMS
    Fumagalli, Ivan
    Manzoni, Andrea
    Parolini, Nicola
    Verani, Marco
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1857 - 1885
  • [42] A Posteriori Error Estimates for a Nonconforming Finite Element Discretization of the Stokes-Biot System
    Houedanou, Koffi Wilfrid
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2022, 2022
  • [43] A posteriori error control for finite element approximations of elliptic eigenvalue problems
    Vincent Heuveline
    Rolf Rannacher
    Advances in Computational Mathematics, 2001, 15 : 107 - 138
  • [44] A posteriori error estimator for eigenvalue problems by mixed finite element method
    ShangHui Jia
    HongTao Chen
    HeHu Xie
    Science China Mathematics, 2013, 56 : 887 - 900
  • [45] A posteriori error estimator for eigenvalue problems by mixed finite element method
    Jia ShangHui
    Chen HongTao
    Xie HeHu
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 887 - 900
  • [46] A posteriori error estimator for eigenvalue problems by mixed finite element method
    JIA ShangHui
    CHEN HongTao
    XIE HeHu
    ScienceChina(Mathematics), 2013, 56 (05) : 888 - 901
  • [47] A posteriori error control for finite element approximations of elliptic eigenvalue problems
    Heuveline, V
    Rannacher, R
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) : 107 - 138
  • [48] Nonconforming rotated Q1 element on non-tensor product anisotropic meshes
    Shipeng Mao
    Zhongci Shi
    Science in China Series A: Mathematics, 2006, 49 : 1363 - 1375
  • [49] A new superconvergence property of nonconforming rotated Q1 element in 3D
    Ming, Pingbing
    Shi, Zhong-Ci
    Xu, Yun
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 197 (1-4) : 95 - 102
  • [50] Nonconforming rotated Q1 element on non-tensor product anisotropic meshes
    Mao Shipeng
    Shi Zhongci
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (10): : 1363 - 1375