A Posteriori Error Estimates with Computable Upper Bound for the Nonconforming Rotated Q1 Finite Element Approximation of the Eigenvalue Problems

被引:2
|
作者
Liu, Jie [1 ]
Xia, Tian [1 ]
Jiang, Wei [2 ]
机构
[1] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Peoples R China
[2] Xiamen Univ, Inst Electromagnet & Acoust, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2014/891278
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper discusses the nonconforming rotated Q(1) finite element computable upper bound a posteriori error estimate of the boundary value problem established by M. Ainsworth and obtains efficient computable upper bound a posteriori error indicators for the eigenvalue problem associated with the boundary value problem. We extend the a posteriori error estimate to the Steklov eigenvalue problem and also derive efficient computable upper bound a posteriori error indicators. Finally, through numerical experiments, we verify the validity of the a posteriori error estimate of the boundary value problem; meanwhile, the numerical results show that the a posteriori error indicators of the eigenvalue problem and the Steklov eigenvalue problem are effective.
引用
收藏
页数:9
相关论文
共 50 条