共 50 条
Involvement of SAPK/JNK Signaling Pathway in Copper Enhanced Zinc-Induced Neuronal Cell Death
被引:22
|作者:
Tanaka, Ken-Ichiro
[1
]
Shimoda, Mikako
[1
]
Kasai, Misato
[1
]
Ikeda, Mayumi
[2
]
Ishima, Yu
[2
]
Kawahara, Masahiro
[1
]
机构:
[1] Musashino Univ, Fac Pharm, Dept Bioanalyt Chem, 1-1-20 Shinmachi, Nishitokyo, Tokyo 2028585, Japan
[2] Tokushima Univ, Inst Biomed Sci, Dept Pharmacokinet & Biopharmaceut, Tokushima 7708505, Japan
基金:
日本学术振兴会;
关键词:
zinc;
copper;
neurotoxicity;
SAPK/JNK;
ER stress;
oxidative stress;
ENDOPLASMIC-RETICULUM STRESS;
N-TERMINAL KINASE;
INDUCED NEUROTOXICITY;
SYNAPTIC ZINC;
GNRH NEURONS;
ACTIVATION;
ALZHEIMERS;
APOPTOSIS;
ZN2+;
HOMEOSTASIS;
D O I:
10.1093/toxsci/kfz043
中图分类号:
R99 [毒物学(毒理学)];
学科分类号:
100405 ;
摘要:
Zinc (Zn) plays an important role in many organisms in various physiological functions such as cell division, immune mechanisms and protein synthesis. However, excessive Zn release is induced in pathological situations and causes neuronal cell death. Previously, we reported that Cu ions (Cu2+) markedly exacerbates Zn2+-induced neuronal cell death by potentiating oxidative stress and the endoplasmic reticulum stress response. In contrast, the stress-activated protein kinase/c-Jun amino-terminal kinase (SAPK/JNK) signaling pathway is important in neuronal cell death. Thus, in this study, we focused on the SAPK/JNK signaling pathway and examined its involvement in Cu2+/Zn2+-induced neurotoxicity. Initially, we examined expression of factors involved in the SAPK/JNK signaling pathway. Accordingly, we found that phosphorylated (ie, active) forms of SAPK/JNK (p46 and p54) are increased by CuCl2 and ZnCl2 co-treatment in hypothalamic neuronal mouse cells (GT1-7 cells). Downstream factors of SAPK/JNK, phospho-c-Jun, and phospho-activating transcription factor 2 are also induced by CuCl2 and ZnCl2 co-treatment. Moreover, an inhibitor of the SAPK/JNK signaling pathway, SP600125, significantly suppressed neuronal cell death and activation of the SAPK/JNK signaling pathway induced by CuCl2 and ZnCl2 cotreatment. Finally, we examined involvement of oxidative stress in activation of the SAPK/JNK signaling pathway, and found that human serum albumin-thioredoxin fusion protein, an antioxidative protein, suppresses activation of the SAPK/JNK signaling pathway. On the basis of these results, our findings suggest that activation of ZnCl2-dependent SAPK/JNK signaling pathway is important in neuronal cell death, and CuCl2-induced oxidative stress triggers the activation of this pathway.
引用
收藏
页码:293 / 302
页数:10
相关论文