Plasmonic gap mode nanocavities at telecommunication wavelengths

被引:0
|
作者
Cheng, Pi-Ju [1 ,2 ]
Weng, Chen-Ya [2 ,3 ]
Chang, Shu-Wei [1 ,2 ]
Lin, Tzy-Rong [3 ,4 ]
Tien, Chung-Hao [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Photon, Hsinchu 30010, Taiwan
[2] Acad Sinica, Res Ctr Appl Sci, Taipei 11529, Taiwan
[3] Natl Taiwan Ocean Univ, Inst Optoelect Sci, Keelung 20224, Taiwan
[4] Natl Taiwan Ocean Univ, Dept Mech & Mech Engn, Keelung 20224, Taiwan
关键词
surface plasmons; semiconductor lasers; nanotechnology; WAVE-GUIDE; ENHANCEMENT; INDEX;
D O I
10.1117/12.2038718
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We analyze a plasmonic gap-mode Fabry-Perot nanocavity containing a metallic nanowire. The proper choice of the cladding layer brings about a decent confinement inside the active region for the fundamental and first-order plasmonic gap modes. We numerically extract the reflectivity of the fundamental and first-order mode and obtain the optical field inside the cavity. We also study the dependence of the reflectivity on the thickness of Ag reflectors and show that a decent reflectivity above 90 % is achievable. For such cavities with a cavity length approaching 1.5 pm, a quality factor near 150 and threshold gain lower than 1500 cm-1 are achievable.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Enhanced Second Harmonic Generation in Plasmonic Nanocavities
    Pu, Ye
    Grange, Rachel
    Hsieh, Chia-Lung
    Psaltis, Demetri
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [42] Large spontaneous emission enhancement in plasmonic nanocavities
    Kasey J. Russell
    Tsung-Li Liu
    Shanying Cui
    Evelyn L. Hu
    Nature Photonics, 2012, 6 (7) : 459 - 462
  • [43] SPP standing waves within plasmonic nanocavities
    Yang, Da-Jie
    Ding, Si-Jing
    Ma, Liang
    Mu, Qing-Xia
    Wang, Qu-Quan
    OPTICS EXPRESS, 2022, 30 (24) : 44055 - 44070
  • [44] Large spontaneous emission enhancement in plasmonic nanocavities
    Russell, Kasey J.
    Liu, Tsung-Li
    Cui, Shanying
    Hu, Evelyn L.
    NATURE PHOTONICS, 2012, 6 (07) : 459 - 462
  • [45] Plasmonic nanoantennas and nanocavities: a transformation electromagnetics perspective
    Pacheco-Pena, Victor
    Alves, Ruben A.
    Navarro-Cia, Miguel
    2020 XXXIIIRD GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM OF THE INTERNATIONAL UNION OF RADIO SCIENCE, 2020,
  • [46] Light trapping in plasmonic nanocavities on metal surfaces
    Polyakov, Aleksandr
    Padmore, Howard A.
    Liang, Xiaogan
    Dhuey, Scott
    Harteneck, Bruce
    Schuck, James P.
    Cabrini, Stefano
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (06):
  • [47] Tracking Nanoelectrochemistry Using Individual Plasmonic Nanocavities
    Di Martino, G.
    Turek, V. A.
    Lombardi, A.
    Szabo, I.
    de Nijs, B.
    Kuhn, A.
    Rosta, E.
    Baumberg, J. J.
    NANO LETTERS, 2017, 17 (08) : 4840 - 4845
  • [48] Plasmonic waveguiding properties of the gap plasmon mode with a dielectric substrate
    Wei, Wei
    Zhang, Xia
    Yu, Hui
    Huang, Yongqing
    Ren, Xiaomin
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2013, 11 (03) : 279 - 287
  • [49] Miniaturized Design of a 1 x 2 Plasmonic Demultiplexer Based on Metal-Insulator-Metal Waveguide for Telecommunication Wavelengths
    Butt, M. A.
    Kazanskiy, N. L.
    Khonina, S. N.
    PLASMONICS, 2023, 18 (02) : 635 - 641
  • [50] Molecular beam epitaxy of n-Zn(Mg)O as a low-damping plasmonic material at telecommunication wavelengths
    Sadofev, Sergey
    Kalusniak, Sascha
    Schaefer, Peter
    Henneberger, Fritz
    APPLIED PHYSICS LETTERS, 2013, 102 (18)