Plasmonic gap mode nanocavities at telecommunication wavelengths

被引:0
|
作者
Cheng, Pi-Ju [1 ,2 ]
Weng, Chen-Ya [2 ,3 ]
Chang, Shu-Wei [1 ,2 ]
Lin, Tzy-Rong [3 ,4 ]
Tien, Chung-Hao [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Photon, Hsinchu 30010, Taiwan
[2] Acad Sinica, Res Ctr Appl Sci, Taipei 11529, Taiwan
[3] Natl Taiwan Ocean Univ, Inst Optoelect Sci, Keelung 20224, Taiwan
[4] Natl Taiwan Ocean Univ, Dept Mech & Mech Engn, Keelung 20224, Taiwan
关键词
surface plasmons; semiconductor lasers; nanotechnology; WAVE-GUIDE; ENHANCEMENT; INDEX;
D O I
10.1117/12.2038718
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We analyze a plasmonic gap-mode Fabry-Perot nanocavity containing a metallic nanowire. The proper choice of the cladding layer brings about a decent confinement inside the active region for the fundamental and first-order plasmonic gap modes. We numerically extract the reflectivity of the fundamental and first-order mode and obtain the optical field inside the cavity. We also study the dependence of the reflectivity on the thickness of Ag reflectors and show that a decent reflectivity above 90 % is achievable. For such cavities with a cavity length approaching 1.5 pm, a quality factor near 150 and threshold gain lower than 1500 cm-1 are achievable.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Plasmonic gap-mode nanocavities with metallic mirrors in high-index cladding
    Cheng, Pi-Ju
    Weng, Chen-Ya
    Chang, Shu-Wei
    Lin, Tzy-Rong
    Tien, Chung-Hao
    OPTICS EXPRESS, 2013, 21 (11): : 13479 - 13491
  • [2] Improved Models for Plasmonic Waveguide Splitters and Demultiplexers at the Telecommunication Wavelengths
    Zhu, Jia Hu
    Huang, Xu Guang
    Mei, Xian
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2011, 10 (05) : 1166 - 1171
  • [3] Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths
    Lu, Hua
    Cumming, Benjamin P.
    Gu, Min
    OPTICS LETTERS, 2015, 40 (15) : 3647 - 3650
  • [4] Cladding Effect on Hybrid Plasmonic Nanowire Cavity at Telecommunication Wavelengths
    Cheng, Pi-Ju
    Weng, Chen-Ya
    Chang, Shu-Wei
    Lin, Tzy-Rong
    Tien, Chung-Hao
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (03)
  • [5] Heavily n-type ZnO: A plasmonic material at telecommunication wavelengths
    Kalusniak, Sascha
    Sadofev, Sergey
    Schaefer, Peter
    Henneberger, Fritz
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 11, NO 7-8, 2014, 11 (7-8): : 1357 - 1360
  • [6] Revealing the Photothermal Behavior of Plasmonic Gap Modes: Toward Thermostable Nanocavities
    Sun, Jiawei
    Hu, Huatian
    Xu, Yuhao
    Li, Yang
    Xu, Hongxing
    LASER & PHOTONICS REVIEWS, 2022, 16 (05)
  • [7] Improving the absorption of a plasmonic absorber using a single layer of graphene at telecommunication wavelengths
    Zare, Mohammad Sadegh
    Nozhat, Najmeh
    Rashiditabar, Reza
    APPLIED OPTICS, 2016, 55 (34) : 9764 - 9768
  • [8] Measuring the mode volume of plasmonic nanocavities using coupled optical emitters
    Russell, Kasey J.
    Yeung, Kitty Y. M.
    Hu, Evelyn
    PHYSICAL REVIEW B, 2012, 85 (24)
  • [9] Gap-mode plasmonic nanocavity
    Russell, Kasey J.
    Hu, Evelyn L.
    APPLIED PHYSICS LETTERS, 2010, 97 (16)
  • [10] Vertical Plasmonic Resonant Nanocavities
    Zhu, Xinli
    Zhang, Jiasen
    Xu, Jun
    Yu, Dapeng
    NANO LETTERS, 2011, 11 (03) : 1117 - 1121