Robust optimization algorithms for multi-objective knapsack problem

被引:0
|
作者
Miyamoto, Takuya [1 ]
Fujiwara, Akihiro [1 ]
机构
[1] Kyushu Inst Technol, Grad Sch Comp Sci & Syst Engn, Iizuka, Fukuoka 8208502, Japan
关键词
robust optimization; multi-objective problem; Pareto-optimal solution; knapsack problem;
D O I
10.1109/CANDARW57323.2022.00015
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The solution obtained using a simple optimization technique is affected by changes in variables in the real world due to errors and other factors, and thus the predicted optimality of the solution may not be guaranteed. Therefore, a robust optimal solution, which is less affected by changes in variables, has attracted considerable attention in recent years. In the present paper, we propose an optimization algorithm for robust solutions of the multi-objective knapsack problem. Experimental results show that our proposed algorithm obtains a wider range of solutions than the existing algorithm.
引用
收藏
页码:430 / 432
页数:3
相关论文
共 50 条
  • [21] Efficient multi-objective optimization algorithms for construction site layout problem
    Kaveh, A.
    Moghaddam, M. Rastegar
    Khanzadi, M.
    SCIENTIA IRANICA, 2018, 25 (04) : 2051 - 2062
  • [22] Tuning Multi-Objective Optimization Algorithms for the Integration and Testing Order Problem
    Ravber, Miha
    Crepinsek, Matej
    Mernik, Marjan
    Kosar, Tomaz
    BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS, BIOMA 2018, 2018, 10835 : 234 - 245
  • [23] Set-Based Particle Swarm Optimization for the Multi-objective Multi-dimensional Knapsack Problem
    Spangenberg, Mari
    Engelbrecht, Andries
    ADVANCES IN SWARM INTELLIGENCE, PT I, ICSI 2024, 2024, 14788 : 3 - 19
  • [24] RETRACTED: A Robust Algorithm for Multi-Objective Optimization Problem (Retracted Article)
    Zhu, Bingkun
    Xu, Lihong
    Hu, Haigen
    Liang, Yuming
    ICCSIT 2010 - 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 4, 2010, : 68 - 72
  • [25] Multi-objective Evolutionary Approaches for the Knapsack Problem with Stochastic Profits
    Perera, Kokila Kasuni
    Neumann, Frank
    Neumann, Aneta
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PPSN 2024, PT I, 2024, 15148 : 116 - 132
  • [26] Identifying preferred solutions to Multi-Objective Binary Optimisation problems, with an application to the Multi-Objective Knapsack Problem
    Nikolaos Argyris
    José Rui Figueira
    Alec Morton
    Journal of Global Optimization, 2011, 49 : 213 - 235
  • [27] Hybrid multi-objective Bayesian estimation of distribution algorithm: a comparative analysis for the multi-objective knapsack problem
    Martins, Marcella S. R.
    Delgado, Myriam R. B. S.
    Luders, Ricardo
    Santana, Roberto
    Goncalves, Richard A.
    de Almeida, Carolina P.
    JOURNAL OF HEURISTICS, 2018, 24 (01) : 25 - 47
  • [28] Hybrid multi-objective Bayesian estimation of distribution algorithm: a comparative analysis for the multi-objective knapsack problem
    Marcella S. R. Martins
    Myriam R. B. S. Delgado
    Ricardo Lüders
    Roberto Santana
    Richard A. Gonçalves
    Carolina P. de Almeida
    Journal of Heuristics, 2018, 24 : 25 - 47
  • [29] Identifying preferred solutions to Multi-Objective Binary Optimisation problems, with an application to the Multi-Objective Knapsack Problem
    Argyris, Nikolaos
    Figueira, Jose Rui
    Morton, Alec
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 49 (02) : 213 - 235
  • [30] Multi-objective Robust Optimization and Decision-Making Using Evolutionary Algorithms
    Yadav, Deepanshu
    Ramu, Palaniappan
    Deb, Kalyanmoy
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 786 - 794