Recent advances in linear barycentric rational interpolation

被引:67
|
作者
Berrut, Jean-Paul [1 ]
Klein, Georges [1 ]
机构
[1] Univ Fribourg, Dept Math, CH-1700 Fribourg, Switzerland
关键词
Linear rational interpolation; Barycentric form; Lebesgue constant; Differentiation; Quadrature; Equispaced nodes; LEBESGUE CONSTANT; CONVERGENCE-RATES; DERIVATIVES; STABILITY; LAGRANGE;
D O I
10.1016/j.cam.2013.03.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Well-conditioned, stable and infinitely smooth interpolation in arbitrary nodes is by no means a trivial task, even in the univariate setting considered here; already the most important case, equispaced points, is not obvious. Certain approaches have nevertheless experienced significant developments in the last decades. In this paper we review one of them, linear barycentric rational interpolation, as well as some of its applications. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 107
页数:13
相关论文
共 50 条
  • [21] An algorithm for best rational approximation based on barycentric rational interpolation
    Clemens Hofreither
    Numerical Algorithms, 2021, 88 : 365 - 388
  • [22] Image Zooming Using Barycentric Rational Interpolation
    Zaini, A. M. Esmaili
    Loghmani, G. Barid
    Latif, A. M.
    Karbassi, S. M.
    JOURNAL OF MATHEMATICAL EXTENSION, 2018, 12 (04) : 67 - 86
  • [23] An iterative approach to barycentric rational Hermite interpolation
    Cirillo, Emiliano
    Hormann, Kai
    NUMERISCHE MATHEMATIK, 2018, 140 (04) : 939 - 962
  • [24] An algorithm for best rational approximation based on barycentric rational interpolation
    Hofreither, Clemens
    NUMERICAL ALGORITHMS, 2021, 88 (01) : 365 - 388
  • [25] Barycentric rational interpolation at quasi-equidistant nodes
    Hormann, Kai
    Klein, Georges
    De Marchi, Stefano
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2012, 5 : 1 - 6
  • [27] Matrices for the direct determination of the barycentric weights of rational interpolation
    Berrut, JP
    Mittelmann, HD
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 78 (02) : 355 - 370
  • [28] On the Lebesgue constant of barycentric rational interpolation at equidistant nodes
    Len Bos
    Stefano De Marchi
    Kai Hormann
    Georges Klein
    Numerische Mathematik, 2012, 121 : 461 - 471
  • [29] Convergence rates of a family of barycentric osculatory rational interpolation
    Ke Jing
    Ning Kang
    Gongqin Zhu
    Journal of Applied Mathematics and Computing, 2017, 53 : 169 - 181
  • [30] Barycentric-thiele type blending rational interpolation
    Jiang, Ping
    Shi, Manhong
    Journal of Information and Computational Science, 2015, 12 (05): : 1731 - 1738