A Preliminary Study of Convolutional Neural Network Architectures for Breast Cancer Image Classification

被引:0
|
作者
Khairi, Siti Shaliza Mohd [1 ]
Abu Bakar, Mohd Aftar [2 ]
Alias, Mohd Almie [2 ]
Abu Bakar, Sakhinah [2 ]
Liong, Choong-Yeun [2 ]
机构
[1] Univ Teknol Mara, Fac Comp & Math Sci, Shah Alam 40450, Selangor, Malaysia
[2] Univ Kebangsaan Malaysia, Fac Sci & Technol, Bangi 43600, Selangor, Malaysia
关键词
breast cancer; histopathology; deep learning; convolutional neural networks; classification;
D O I
10.1109/CSDE53843.2021.9718500
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Breast cancer is one of the most common cancer with high mortality rate worldwide. Classification of breast cancer images is an important clinical issue related to accurate early diagnosis and treatment plan preparation. However, it is still uncertain which model is effective for classifying breast cancer images. For medical image analysis, deep learning models have proved to yield excellent outcomes in classification tasks. Hence, this study compared the performance of the most common deep learning models which is convolutional neural networks for breast cancer classification on the histopathology images. A total of 7,909 images were extracted from BreakHis database that comprised of 2,480 benign and 5,429 malignant samples. The images are of four different magnifications which are 40X, 100X, 200X and 400X. This study focused on comparing the state-of the-art architectures, namely, AlexNet, GoogleNet and ResNet 18 to evaluate the performance of model in classifying the breast cancer images. The models were examined through a multiclass classification analysis in terms of accuracy, sensitivity, specificity and F-Score. The experimental results indicated that ResNet18 was the most effective method with an accuracy of 94.8% with 70 min 31 sec time taken for computation. The research findings are expected to facilitate the radiologist in classifying the breast cancer images and hence planning proper treatment for patients.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] A twin convolutional neural network with hybrid binary optimizer for multimodal breast cancer digital image classification
    Olaide N. Oyelade
    Eric Aghiomesi Irunokhai
    Hui Wang
    Scientific Reports, 14
  • [32] Multi-classification of breast cancer histopathological image using enhanced shallow convolutional neural network
    Musa Yusuf
    Armand Florentin Donfack Kana
    Mustapha Aminu Bagiwa
    Mohammed Abdullahi
    Journal of Engineering and Applied Science, 2025, 72 (1):
  • [33] Simple Convolutional Neural Network on Image Classification
    Guo, Tianmei
    Dong, Jiwen
    Li, Henjian
    Gao, Yunxing
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 721 - 724
  • [34] Quantum convolutional neural network for image classification
    Chen, Guoming
    Chen, Qiang
    Long, Shun
    Zhu, Weiheng
    Yuan, Zeduo
    Wu, Yilin
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) : 655 - 667
  • [35] Shallow convolutional neural network for image classification
    Lei, Fangyuan
    Liu, Xun
    Dai, Qingyun
    Ling, Bingo Wing-Kuen
    SN APPLIED SCIENCES, 2020, 2 (01):
  • [36] Food Image Classification with Convolutional Neural Network
    Islam, Md Tohidul
    Siddique, B. M. Nafiz Karim
    Rahman, Sagidur
    Jabid, Taskeed
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATICS AND BIOMEDICAL SCIENCES (ICIIBMS), 2018, : 257 - +
  • [37] Image Classification Based on Convolutional Neural Network
    Prassanna, P. Lakshmi
    Sandeep, S.
    Rao, Kantha
    Sasidhar, T.
    Lavanya, D. Ragava
    Deepthi, G.
    SriLakshmi, N. Vijaya
    Mounika, P.
    Govardhani, U.
    SUSTAINABLE COMMUNICATION NETWORKS AND APPLICATION, ICSCN 2021, 2022, 93 : 833 - 842
  • [38] Medical Image Classification with Convolutional Neural Network
    Li, Qing
    Cai, Weidong
    Wang, Xiaogang
    Zhou, Yun
    Feng, David Dagan
    Chen, Mei
    2014 13TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION (ICARCV), 2014, : 844 - 848
  • [39] Quantum convolutional neural network for image classification
    Guoming Chen
    Qiang Chen
    Shun Long
    Weiheng Zhu
    Zeduo Yuan
    Yilin Wu
    Pattern Analysis and Applications, 2023, 26 : 655 - 667
  • [40] Local and Global Feature Utilization for Breast Image Classification by Convolutional Neural Network
    Nahid, Abdullah-Al
    Kong, Yinan
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 540 - 545