Identification of the mechanism that confers superhydrophobicity on 316L stainless steel

被引:10
|
作者
Escobar, Ana M. [1 ]
Llorca-Isern, Nuria [1 ]
Rius-Ayra, Oriol [1 ]
机构
[1] Univ Barcelona, Fac Quim, CPCM Dept Ciencia Mat & Engn Met, E-08028 Barcelona, Spain
关键词
Superhydrophobicity; Stainless steel; Coating; Electrolytic reaction; Self assembly; Hierarchical structures; NICKEL METAL; SURFACES; FABRICATION; WATER; DURABILITY; RESISTANT; COATINGS; SCRATCH; LAYERS; FILMS;
D O I
10.1016/j.matchar.2015.11.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study develops a rapid method to confer superhydrophobicity on 316L stainless steel surfaces with an amphiphilic reagent such as dodecanoic acid. The highest contact angle (approaching 173 degrees) was obtained after forming hierarchical structures with a non-aqueous electrolyte by an electrolytic process. Our goal was to induce superhydrophobicity directly on 316L stainless steel substrates and to establish which molecules cause the effect. The superhydrophobic behaviour is analysed by contact angle measurements, scanning electron microscopy (SEM), IR spectroscopy and atomic force microscopy (AFM). The growth mechanism is analysed using FE-SEM, TOF-SIMS and XPS in order to determine the molecules involved in the reaction and the growth. The TOF-SIMS analysis revealed that the Ni2+ ions react with lauric acid to create an ester on the stainless steel surface. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:162 / 169
页数:8
相关论文
共 50 条
  • [21] PECVD of biocompatible coatings on 316L stainless steel
    Prasad, GR
    Daniels, S
    Cameron, DC
    McNamara, BP
    Tully, E
    O'Kennedy, R
    SURFACE & COATINGS TECHNOLOGY, 2005, 200 (1-4): : 1031 - 1035
  • [22] Injection molding of 316L stainless steel microstructures
    Z. Y. Liu
    N. H. Loh
    S. B. Tor
    Y. Murakoshi
    R. Maeda
    K. A. Khor
    T. Shimidzu
    Microsystem Technologies, 2003, 9 : 507 - 510
  • [23] Electropolishing of 316L stainless steel for anticorrosion passivation
    Hocheng, H
    Kao, PS
    Chen, YF
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2001, 10 (04) : 414 - 418
  • [24] The interaction of galling and oxidation in 316L stainless steel
    Rogers, Samuel R.
    Bowden, David
    Unnikrishnan, Rahul
    Scenini, Fabio
    Preuss, Michael
    Stewart, David
    Dini, Daniele
    Dye, David
    WEAR, 2020, 450
  • [25] Sintering diagram for 316L stainless steel fibers
    Li, Aijun
    Ma, Jun
    Wang, Jianzhong
    Xu, Zhongguo
    Li, Chaolong
    Tang, Huiping
    POWDER TECHNOLOGY, 2016, 288 : 109 - 116
  • [26] Electropolishing of 316L stainless steel for anticorrosion passivation
    H. Hocheng
    P. S. Kao
    Y. F. Chen
    Journal of Materials Engineering and Performance, 2001, 10 : 414 - 418
  • [27] Hydrogen embrittlement of 316L type stainless steel
    Herms, E
    Olive, JM
    Puiggali, M
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 272 (02): : 279 - 283
  • [28] Mixing and Characterisation of stainless steel 316L feedstock
    X. Kong
    C. Quinard
    T. Barrière
    J. C. Gelin
    International Journal of Material Forming, 2009, 2
  • [29] Reaction of 316L stainless steel with a galvanizing bath
    Ke Zhang
    Nai-Yong Tang
    Frank E. Goodwin
    Scott Sexton
    Journal of Materials Science, 2007, 42 : 9736 - 9745
  • [30] THE EFFECT OF PASSIVATION ON THE HAEMOCOMPATIBILITY OF 316L STAINLESS STEEL
    Shi Yongjuan
    Ren Yibin
    Zhang Bingchun
    Yang Ke
    ACTA METALLURGICA SINICA, 2011, 47 (12) : 1575 - 1580