A Review of Non-Thermal Plasma Technology: A novel solution for CO2 conversion and utilization

被引:293
|
作者
George, Adwek [1 ,4 ]
Shen, Boxiong [1 ]
Craven, Michael [3 ]
Wang, Yaolin [3 ]
Kang, Dongrui [1 ]
Wu, Chunfei [1 ,2 ]
Tu, Xin [3 ]
机构
[1] Hebei Univ Technol, Sch Energy & Environm Engn, Key Lab Clean Energy Utilizat & Pollut Control, Tianjin, Peoples R China
[2] Queens Univ Belfast, Sch Chem & Chem Engn, Belfast, Antrim, North Ireland
[3] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, Merseyside, England
[4] Mt Kenya Univ, Dept Energy & Built Environm, Gen Kago Rd, Thika, Kenya
来源
关键词
Non-thermal plasmas; Plasma-catalysis; CO2 conversion and utilization; CO2; capture; DIELECTRIC BARRIER DISCHARGE; TAR MODEL-COMPOUND; NANOSECOND-PULSED DISCHARGE; THERMONUCLEAR REACTOR POWER; GLIDING ARC PLASMATRON; CARBON-DIOXIDE; ATMOSPHERIC-PRESSURE; LOW-TEMPERATURE; CATALYTIC CONVERSION; MICROWAVE PLASMA;
D O I
10.1016/j.rser.2020.109702
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Increasing attention has been drawn to carbon dioxide (CO2) conversion into higher-value platform chemicals and synthetic fuels due to global warming. These reactions require a large amount of thermal energy in order to proceed, which is ascribable to the high stability of the bonds in CO2. Non-thermal plasma (NTP)-catalytic CO2 conversion has emerged as a promising method to significantly reduce the reaction temperature as plasma can activate CO2 at as low as room temperature and atmosphere pressure. However, this technology requires a paradigm shift in process design to enhance plasma-catalytic performance. CO2 conversion using plasma-catalysis has great potential to increase reaction efficiencies due to the synergetic effects between the plasma and catalysts. It is crucial to present the recent progress in CO2 conversion and utilization whilst providing a research prospects framework and direction for future research in both industries and laboratories. Herein, a comprehensive review of recent, encouraging research achievements in CO2 conversion using NTP is provided. The topics reviewed in this work are: i) the recent progress in different NTP sources in relation to product selectivity, conversion, and energy efficiency; ii) plasma-based CO2 reactions and applications; iii) CO2 conversion integrated with CO2 capture; and iv) current challenges and future perspectives. The high market value of the possible products from this process, including chemicals and fuels, make commercialization of the process feasible. Furthermore, the selectivities of these products can be further improved by developing suitable catalysts with effective sensitivities and performances under the intricate conditions needed to make these products. There is an urgent need for further studies to be performed in this emerging field.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Conversion of carbon disulfide in air by non-thermal plasma
    Yan, Xiao
    Sun, Yifei
    Zhu, Tianle
    Fan, Xing
    JOURNAL OF HAZARDOUS MATERIALS, 2013, 261 : 669 - 674
  • [42] Synergetic effect of non-thermal plasma and supported cobalt catalyst in plasma-enhanced CO2 hydrogenation
    Wang, Jiajie
    Wang, Xiaoxing
    AlQahtani, Mohammad S.
    Knecht, Sean D.
    Bilen, Sven G.
    Chu, Wei
    Song, Chunshan
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [43] Synergetic effect of non-thermal plasma and supported cobalt catalyst in plasma-enhanced CO2 hydrogenation
    Wang, Jiajie
    Wang, Xiaoxing
    AlQahtani, Mohammad S.
    Knecht, Sean D.
    Bilén, Sven G.
    Chu, Wei
    Song, Chunshan
    Chemical Engineering Journal, 2023, 451
  • [44] Application of Co/ZSM-5 Catalyst and Non-Thermal Plasma on CO2 Hydrogenation to Light Hydrocarbons
    Lan, Liying
    Zeng, Aonan
    Wang, Anjie
    Wang, Yao
    Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36 (02): : 293 - 300
  • [45] Non-Thermal Plasma as Environmentally-Friendly Technology for Agriculture: A Review and Roadmap
    Bilea, Florin
    Garcia-Vaquero, Marco
    Magureanu, Monica
    Mihaila, Ilarion
    Mildaziene, Vida
    Mozetic, Miran
    Pawlat, Joanna
    Primc, Gregor
    Puac, Nevena
    Robert, Eric
    Stancampiano, Augusto
    Topala, Ionut
    Zukiene, Rasa
    CRITICAL REVIEWS IN PLANT SCIENCES, 2024, 43 (06) : 428 - 486
  • [46] Review of CO2 Adsorption Materials and Utilization Technology
    Ren, Furao
    Liu, Weijun
    CATALYSTS, 2023, 13 (08)
  • [47] Tar destruction using non-thermal plasma technology-a critical review
    Pathak, Ram Mohan
    Jayanarasimhan, Ananthanarasimhan
    Rao, Lakshminarayana
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2025, 58 (15)
  • [48] Degradation of pharmaceutical contaminants in wastewater by non-thermal plasma technology: A comprehensive Review
    Wang, Yongsheng
    Song, Jialin
    Zhu, Ruotong
    Peng, Mingbin
    Long, Jiao
    Bao, Tao
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (03):
  • [49] Conversion of CO2 by non- thermal inductively-coupled plasma catalysis†
    Devid, Edwin
    Ronda-Lloret, Maria
    Huang, Qiang
    Rothenberg, Gadi
    Shiju, N. Raveendran
    Kleyn, Aart
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2020, 33 (02) : 243 - 251
  • [50] Application of Non-Thermal Plasma on Biofilm: A Review
    Gupta, Tripti Thapa
    Ayan, Halim
    APPLIED SCIENCES-BASEL, 2019, 9 (17):