A dual state variable model of the van der Pol oscillator

被引:0
|
作者
Post, Alvin [1 ]
Stuiver, Willem
机构
[1] Arizona State Univ, Dept Mech & Mfg Engn Technol, Mesa, AZ 85212 USA
[2] Univ Hawaii, Dept Mech Engn, Honolulu, HI 96822 USA
关键词
van der Pol; perturbation; DSV; dual state variables; oscillator;
D O I
10.1016/j.ijnonlinmec.2006.01.004
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A new, "dual" state variable (DSV) formulation is used to construct a model of the van der Pol oscillator. The model is valid for small degrees of non-linearity, and results are superior to those from a common perturbation technique, especially as non-linearity begins to increase. The DSV formulation utilizes a unique state space, and behavior in this space is illustrated for a wider range of non-linearity. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:665 / 671
页数:7
相关论文
共 50 条
  • [41] On the Formation of Feedbacks in the Van der Pol Spatial Oscillator
    V. F. Zhuravlev
    Mechanics of Solids, 2020, 55 : 926 - 931
  • [42] On limit cycle approximations in the van der Pol oscillator
    Padín, MS
    Robbio, FI
    Moiola, JL
    Chen, GR
    CHAOS SOLITONS & FRACTALS, 2005, 23 (01) : 207 - 220
  • [43] Dynamics of a simplified van der Pol oscillator revisited
    Luo, Albert C. J.
    Rajendran, Arun
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINERING CONGRESS AND EXPOSITION 2007, VOL 9, PTS A-C: MECHANICAL SYSTEMS AND CONTROL, 2008, : 1885 - 1892
  • [44] Van der Pol Oscillator. Technical Applications
    Zhuravlev, V. Ph.
    MECHANICS OF SOLIDS, 2020, 55 (01) : 132 - 137
  • [45] Critical Response of a Quantum van der Pol Oscillator
    Dutta, Shovan
    Cooper, Nigel R.
    PHYSICAL REVIEW LETTERS, 2019, 123 (25)
  • [46] The existence of closed trajectory in the van der Pol oscillator
    Wang, D
    Zhou, SB
    Yu, JB
    2002 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS AND WEST SINO EXPOSITION PROCEEDINGS, VOLS 1-4, 2002, : 1629 - 1632
  • [47] The Buffer Phenomenon in the Van Der Pol Oscillator with Delay
    A. Yu. Kolesov
    N. Kh. Rozov
    Differential Equations, 2002, 38 : 175 - 186
  • [48] Parametric excitation for forcing van der Pol oscillator
    Abd El-Latif, GM
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (01) : 255 - 265
  • [49] Biological applications of the "Filtered" Van der Pol oscillator
    Kaplan, B. Z.
    Gabay, I.
    Sarafian, G.
    Sarafian, D.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2008, 345 (03): : 226 - 232
  • [50] Qualitative analysis in a delayed Van der Pol oscillator
    Peng, Miao
    Zhang, Zhengdi
    Qu, Zifang
    Bi, Qinsheng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 544