Non-Markovian quantum trajectories versus master equations: Finite-temperature heat bath

被引:126
|
作者
Yu, T
机构
[1] Univ Rochester, Rochester Theory Ctr Opt Sci & Engn, Rochester, NY 14627 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[3] Queen Mary Univ London, Dept Phys, London E1 4NS, England
来源
PHYSICAL REVIEW A | 2004年 / 69卷 / 06期
关键词
D O I
10.1103/PhysRevA.69.062107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The interrelationship between the non-Markovian stochastic Schrodinger equations and the corresponding non-Markovian master equations is investigated in the finite-temperature regimes. We show that the general finite-temperature non-Markovian trajectories can be used to derive the corresponding non-Markovian master equations. A simple, yet important solvable example is the well-known damped harmonic oscillator model in which a harmonic oscillator is coupled to a finite-temperature reservoir in the rotating-wave approximation. The exact convolutionless master equation for the damped harmonic oscillator is obtained by averaging the quantum trajectories, relying upon no assumption of coupling strength or time scale. The master equation derived in this way automatically preserves the positivity, Hermiticity, and unity.
引用
收藏
页码:062107 / 1
页数:9
相关论文
共 50 条
  • [41] SCHRODINGER-CAT STATES AT FINITE TEMPERATURE - INFLUENCE OF A FINITE-TEMPERATURE HEAT BATH ON QUANTUM INTERFERENCES
    KIM, MS
    BUZEK, V
    PHYSICAL REVIEW A, 1992, 46 (07): : 4239 - 4251
  • [42] Failure of the free energy relation under a non-Markovian heat bath temperature change
    曹亮
    Michael Cross
    郑志刚
    Chinese Physics B, 2012, (09) : 1 - 6
  • [43] Quantum synchronization and correlations of two qutrits in a non-Markovian bath
    Zhang, Jian-Song
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2020, 18 (03)
  • [44] Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach
    Chen, Yusui
    You, J. Q.
    Yu, Ting
    PHYSICAL REVIEW A, 2014, 90 (05)
  • [45] Non-Markovian master equation for quantum transport of fermionic carriers
    Maksimov, D. N.
    Aksenov, S., V
    Kolovsky, A. R.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (04)
  • [46] Non-Markovian quantum jump with generalized Lindblad master equation
    Huang, X. L.
    Sun, H. Y.
    Yi, X. X.
    PHYSICAL REVIEW E, 2008, 78 (04)
  • [47] Quantum trajectories under frequent measurements in a non-Markovian environment
    Xu, Luting
    Li, Xin-Qi
    PHYSICAL REVIEW A, 2016, 94 (03)
  • [48] Quantum non-Markovian Langevin equations and transport coefficients
    V. V. Sargsyan
    Z. Kanokov
    G. G. Adamian
    N. V. Antonenko
    Physics of Atomic Nuclei, 2005, 68 : 2009 - 2021
  • [49] Quantum non-Markovian Langevin equations and transport coefficients
    Sargsyan, VV
    Kanokov, Z
    Adamian, GG
    Antonenko, NV
    PHYSICS OF ATOMIC NUCLEI, 2005, 68 (12) : 2009 - 2021
  • [50] Exact master equation and non-markovian decoherence for quantum dot quantum computing
    Tu, Matisse Wei-Yuan
    Lee, Ming-Tsung
    Zhang, Wei-Min
    QUANTUM INFORMATION PROCESSING, 2009, 8 (06) : 631 - 646