Total domination critical graphs with respect to relative complements

被引:0
|
作者
Haynes, TW
Henning, MA
van der Merwe, LC
机构
[1] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[2] Univ KwaZulu Natal, Sch Math Stat & Informat Technol, ZA-3209 Pietermaritzburg, South Africa
[3] NE State Tech Community Coll, Div Math & Sci, Blountville, TN 37617 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S of vertices of a graph G is a total dominating set if every vertex of V (G) is adjacent to some vertex in S. The total domination number gamma(t)(G) is the minimum cardinality of a total dominating set of G. Let G be a spanning subgraph of K-s,K-s and let H be the complement of G relative to K-s,K-s; that is, K-s,K-s = G circle plus H is a factorization of K-s,K-s. The graph G is k(t)-critical relative to K-s,K-s if gamma(t)(G) = k and gamma(t)(G + e) < k for all e is an element of E(H). We study kt-critical graphs relative to K-s,K-s for small values of k. In particular, we characterize the 3(t)-critical and 4(t)-critical graphs.
引用
收藏
页码:169 / 179
页数:11
相关论文
共 50 条
  • [21] On the total restrained domination edge critical graphs
    Koh, K. M.
    Maleki, Zeinab
    Omoomi, Behnaz
    ARS COMBINATORIA, 2013, 109 : 97 - 112
  • [22] Perfect Matchings in Total Domination Critical Graphs
    Henning, Michael A.
    Yeo, Anders
    GRAPHS AND COMBINATORICS, 2011, 27 (05) : 685 - 701
  • [23] Locating domination in bipartite graphs and their complements
    Hernando, C.
    Mora, M.
    Pelayo, I. M.
    DISCRETE APPLIED MATHEMATICS, 2019, 263 (195-203) : 195 - 203
  • [24] The diameter of total domination and independent domination vertex-critical graphs
    Edwards, M.
    MacGillivray, G.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2012, 52 : 33 - 39
  • [25] A constructive characterization of total domination vertex critical graphs
    Wang, Chunxiang
    Hu, Zhiquan
    Li, Xiangwen
    DISCRETE MATHEMATICS, 2009, 309 (04) : 991 - 996
  • [26] A note on extremal total domination edge critical graphs
    Hanson, D
    Wang, P
    UTILITAS MATHEMATICA, 2003, 63 : 89 - 96
  • [27] Matching Properties in Total Domination Vertex Critical Graphs
    Wang, Haichao
    Kang, Liying
    Shan, Erfang
    GRAPHS AND COMBINATORICS, 2009, 25 (06) : 851 - 861
  • [28] On the Diameter of Total Domination Vertex-Critical Graphs
    Wang, Tao
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S193 - S203
  • [29] Total domination edge critical graphs with minimum diameter
    van der Merwe, LC
    Mynhardt, CM
    Haynes, TW
    ARS COMBINATORIA, 2003, 66 : 79 - 96
  • [30] Matching Properties in Total Domination Vertex Critical Graphs
    Haichao Wang
    Liying Kang
    Erfang Shan
    Graphs and Combinatorics, 2009, 25 : 851 - 861