Total domination critical graphs with respect to relative complements

被引:0
|
作者
Haynes, TW
Henning, MA
van der Merwe, LC
机构
[1] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[2] Univ KwaZulu Natal, Sch Math Stat & Informat Technol, ZA-3209 Pietermaritzburg, South Africa
[3] NE State Tech Community Coll, Div Math & Sci, Blountville, TN 37617 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A set S of vertices of a graph G is a total dominating set if every vertex of V (G) is adjacent to some vertex in S. The total domination number gamma(t)(G) is the minimum cardinality of a total dominating set of G. Let G be a spanning subgraph of K-s,K-s and let H be the complement of G relative to K-s,K-s; that is, K-s,K-s = G circle plus H is a factorization of K-s,K-s. The graph G is k(t)-critical relative to K-s,K-s if gamma(t)(G) = k and gamma(t)(G + e) < k for all e is an element of E(H). We study kt-critical graphs relative to K-s,K-s for small values of k. In particular, we characterize the 3(t)-critical and 4(t)-critical graphs.
引用
收藏
页码:169 / 179
页数:11
相关论文
共 50 条
  • [1] Total domination supercritical graphs with respect to relative complements
    Haynes, TW
    Henning, MA
    van der Merwe, LC
    DISCRETE MATHEMATICS, 2002, 258 (1-3) : 361 - 371
  • [2] Connected domination critical graphs with respect to relative complements
    Chen, Xue-Gang
    Sun, Liang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (02) : 417 - 423
  • [3] Connected domination critical graphs with respect to relative complements
    Xue-gang Chen
    Liang Sun
    Czechoslovak Mathematical Journal, 2006, 56 : 417 - 423
  • [4] Domination and total domination critical trees with respect to relative complements
    Haynes, TW
    Henning, MA
    van der Merwe, LC
    ARS COMBINATORIA, 2001, 59 : 117 - 127
  • [5] Critical graphs with respect to total domination and connected domination
    Kaemawichanurat, P.
    Caccetta, L.
    Ananchuen, N.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2016, 65 : 1 - 13
  • [6] Total domination supercritical graphs with respect to relative complements (vol 258, pg 361, 2002)
    Alimadadi, Abdollah
    Eslahchi, Changiz
    Haynes, Teresa W.
    Henning, Michael A.
    Rad, Nader Jafari
    van der Merwee, Lucas C.
    DISCRETE MATHEMATICS, 2012, 312 (05) : 1076 - 1076
  • [7] Graphs and their complements with equal total domination numbers
    1600, Charles Babbage Research Centre (87):
  • [8] Game total domination critical graphs
    Henning, Michael A.
    Klavzar, Sandi
    Rall, Douglas F.
    DISCRETE APPLIED MATHEMATICS, 2018, 250 : 28 - 37
  • [9] Total domination edge critical graphs
    van der Merwe, LC
    Mynhardt, CM
    Haynes, TW
    UTILITAS MATHEMATICA, 1998, 54 : 229 - 240
  • [10] Domination in Bipartite Graphs and in Their Complements
    Bohdan Zelinka
    Czechoslovak Mathematical Journal, 2003, 53 : 241 - 247