Blow-up results and soliton solutions for a generalized variable coefficient nonlinear Schrodinger equation

被引:3
|
作者
Escorcia, J. [1 ]
Suazo, E. [2 ]
机构
[1] Univ Puerto Rico, Dept Math, POB 4010, Arecibo, PR 00614 USA
[2] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, 1201 W Univ Dr, Edinburg, TX 78539 USA
关键词
Soliton-like equations; Nonlinear Schrodinger like equations; Fiber optics; Gross-Pitaevskii equation; Similarity transformations and; Riccati-Ermakov systems; SCHROEDINGER EQUATIONS; SIMILARITY STRUCTURE; WAVE-FUNCTIONS; ROGUE WAVES; TRANSFORMATIONS; EVOLUTION; SYSTEMS; BRIGHT;
D O I
10.1016/j.amc.2016.12.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by means of similarity transformations we study exact analytical solutions for a generalized nonlinear Schrodinger equation with variable coefficients. This equation appears in literature describing the evolution of coherent light in a nonlinear Kerr medium, Bose-Einstein condensates phenomena and high intensity pulse propagation in optical fibers. By restricting the coefficients to satisfy Ermakov-Riccati systems with multiparameter solutions, we present conditions for existence of explicit solutions with singularities and a family of oscillating periodic soliton-type solutions. Also, we show the existence of bright-, dark- and Peregrine-type soliton solutions, and by means of a computer algebra system we exemplify the nontrivial dynamics of the solitary wave center of these solutions produced by our multiparameter approach. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:155 / 176
页数:22
相关论文
共 50 条
  • [21] Blow-up for the nonlinear Schrodinger equation in nonisotropic spaces
    Martel, Y
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (12) : 1903 - 1908
  • [22] ON COLLAPSING RING BLOW-UP SOLUTIONS TO THE MASS SUPERCRITICAL NONLINEAR SCHRODINGER EQUATION
    Merle, Frank
    Raphael, Pierre
    Szeftel, Jeremie
    DUKE MATHEMATICAL JOURNAL, 2014, 163 (02) : 369 - 431
  • [23] Blow-up of rough solutions to the fourth-order nonlinear Schrodinger equation
    Zhu, Shihui
    Yang, Han
    Zhang, Jian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6186 - 6201
  • [24] Blow-up criteria for the inhomogeneous nonlinear Schrodinger equation
    Yang, Han
    Zhu, Shihui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [25] Soliton solutions for variable coefficient nonlinear Schrodinger equation for optical fiber and their application
    Zong Feng-De
    Dai Chao-Qing
    Yang Qin
    Zhang Jie-Fang
    ACTA PHYSICA SINICA, 2006, 55 (08) : 3805 - 3812
  • [26] Nonautonomous soliton solutions of variable-coefficient fractional nonlinear Schrodinger equation
    Wu, Gang-Zhou
    Dai, Chao-Qing
    APPLIED MATHEMATICS LETTERS, 2020, 106
  • [27] Soliton formation in a variable coefficient nonlinear Schrodinger equation
    Clarke, S
    Grimshaw, R
    Malomed, BA
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 280 - 284
  • [28] Blow-up solutions for mixed nonlinear Schrodinger equations
    Tan, SB
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (01) : 115 - 124
  • [29] Blow-up solutions of inhomogeneous nonlinear Schrodinger equations
    Pang, PYH
    Tang, HY
    Wang, YD
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 26 (02) : 137 - 169
  • [30] Blow-up of solutions of the nonlinear Sobolev equation
    Cao, Yang
    Nie, Yuanyuan
    APPLIED MATHEMATICS LETTERS, 2014, 28 : 1 - 6