Statistical convergence in non-archimedean Kothe sequence spaces

被引:1
|
作者
Jemima, D. Eunice [1 ]
Srinivasan, V [1 ]
机构
[1] SRM Inst Sci & Technol, Fac Engn & Technol, Dept Math, Chennai 603203, Tamil Nadu, India
来源
关键词
Kothe space; non-archimedean field; non-archimedean Kothe space; statistical convergence;
D O I
10.22436/jmcs.023.02.01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to examine statistical convergence in a Kothe sequence space, when the sequences have their entries in a non-archimedean field K which is both non-trivial and complete under the metric induced by the valuation vertical bar center dot vertical bar : K -> [0, infinity), which is denoted by K(B).
引用
收藏
页码:80 / 85
页数:6
相关论文
共 50 条
  • [21] The invariant subspace problem for non-Archimedean Kothe spaces (vol 453, pg 1086, 2017)
    Kasprzak, Henryk
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (02) : 1296 - 1299
  • [22] On non-archimedean Gurarii spaces
    Kakol, J.
    Kubis, W.
    Kubzdela, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (02) : 969 - 981
  • [23] Selectors in non-Archimedean spaces
    Artico, G.
    Marconi, U.
    Moresco, R.
    Pelant, J.
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (03) : 540 - 551
  • [24] On non-Archimedean Hilbertian spaces
    Kubzdela, Albert
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 601 - 610
  • [25] Non-Archimedean Analytic Spaces
    Werner A.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2013, 115 (1) : 3 - 20
  • [26] NON-ARCHIMEDEAN BANACH SPACES
    PUT, MVD
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1969, 97 (03): : 309 - &
  • [27] Gromov-Hausdorff convergence of non-Archimedean fuzzy metric spaces
    Macario, Sergio
    Sanchis, Manuel
    FUZZY SETS AND SYSTEMS, 2015, 267 : 62 - 85
  • [28] Non-Archimedean orthomodular spaces and their residual spaces
    Keller, HA
    Ochsenius, H
    Ultrametric Functional Analysis, 2005, 384 : 145 - 156
  • [29] Some properties of certain sequence spaces over non-archimedean fields
    Natarajan, PN
    P-ADIC FUNCTIONAL ANALYSIS, PROCEEDINGS, 2001, 222 : 227 - 232
  • [30] Non-Archimedean Hilbert like spaces
    Aguayo, J.
    Nova, M.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (05) : 787 - 797