Convergence to the local time of Brownian meander

被引:3
|
作者
Afanasyev, Valeriy, I [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
来源
DISCRETE MATHEMATICS AND APPLICATIONS | 2019年 / 29卷 / 03期
关键词
Brownian meander; local time of Brownian meander; sojourn time of random walk; functional limit theorems; RANDOM-WALKS; DISTRIBUTIONS;
D O I
10.1515/dma-2019-0014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {S-n, n >= 0} be integer-valued random walk with zero drift and variance sigma(2). Let xi (k, n) be number of t is an element of {1, ..., n} such that S(t) = k. For the sequence of random processes xi( left perpendicular u sigma root n right perpendicular, n) considered under conditions S-1 > 0, ..., S-n > 0 a functional limit theorem on the convergence to the local time of Brownian meander is proved.
引用
收藏
页码:149 / 158
页数:10
相关论文
共 50 条
  • [21] Isomorphisms of β-Dyson's Brownian motion with Brownian local time
    Lupu, Titus
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [22] The local time of iterated Brownian motion
    Csaki, E
    Csorgo, M
    Foldes, A
    Revesz, P
    JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (03) : 717 - 743
  • [23] Distribution of Brownian local time on curves
    Davis, B
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 : 182 - 184
  • [24] Brownian Local Time of the Second Order
    Borodin A.N.
    Journal of Mathematical Sciences, 2024, 281 (1) : 50 - 58
  • [25] MARKOV PROPERTIES OF BROWNIAN LOCAL TIME
    WILLIAMS, D
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (05) : 1035 - &
  • [26] The laws of Brownian local time integrals
    Gradinaru, Mihai
    Roynette, Bernard
    Vallois, Pierre
    Yor, Marc
    COMPUTATIONAL & APPLIED MATHEMATICS, 1999, 18 (03): : 259 - 331
  • [27] Some Brownian local time approximations
    Bergery, Blandine Berard
    Vallois, Pierre
    COMPTES RENDUS MATHEMATIQUE, 2007, 345 (01) : 45 - 48
  • [28] LARGE DEVIATIONS FOR THE BROWNIAN LOCAL TIME
    ROYNETTE, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (11): : 855 - 858
  • [29] Brownian Local Time of the Second Order at the Inverse Local Time Moment
    A. N. Borodin
    Journal of Mathematical Sciences, 2024, 286 (5) : 658 - 667
  • [30] AN APPLICATION OF TIME-REVERSAL TO BROWNIAN LOCAL TIME
    MITRO, JB
    ANNALS OF PROBABILITY, 1983, 11 (01): : 225 - 226