Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system

被引:49
|
作者
Wang, Li-Li [1 ,2 ]
Liu, Wen-Jun [1 ,2 ,3 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
soliton; modified Hirota bilinear method; Ginzburg-Landau equation; bright soliton solution; NONLINEAR SCHRODINGER-EQUATION; DISPERSIVE DIELECTRIC FIBERS; OPTICAL SOLITON; TRANSMISSION; DYNAMICS; PULSES; MODEL;
D O I
10.1088/1674-1056/ab90ea
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A coupled (2 + 1)-dimensional variable coefficient Ginzburg-Landau equation is studied. By virtue of the modified Hirota bilinear method, the bright one-soliton solution of the equation is derived. Some phenomena of soliton propagation are analyzed by setting different dispersion terms. The influences of the corresponding parameters on the solitons are also discussed. The results can enrich the soliton theory, and may be helpful in the manufacture of optical devices.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] ERGODICITY OF THE STOCHASTIC COUPLED FRACTIONAL GINZBURG-LANDAU EQUATIONS DRIVEN BY α-STABLE NOISE
    Shen, Tianlong
    Huang, Jianhua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (02): : 605 - 625
  • [22] Localized structures in coupled Ginzburg-Landau equations
    Montagne, R
    Hernández-García, E
    PHYSICS LETTERS A, 2000, 273 (04) : 239 - 244
  • [23] On Solving the (2+1)-Dimensional Nonlinear Cubic-Quintic Ginzburg-Landau Equation Using Five Different Techniques
    Zayed, Elsayed M. E.
    Al-Nowehy, A. -G
    Elshater, Mona E. M.
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2018, 31 (02): : 97 - 118
  • [24] Phase synchronization of coupled Ginzburg-Landau equations
    Junge, L
    Parlitz, U
    PHYSICAL REVIEW E, 2000, 62 (01): : 438 - 441
  • [25] Globally and randomly coupled Ginzburg-Landau maps
    Uchiyama, S
    Fujisaka, H
    PHYSICAL REVIEW E, 1997, 56 (01): : 99 - 111
  • [26] Coupled mesoscopic superconductors: Ginzburg-Landau theory
    Baelus, BJ
    Yampolskii, SV
    Peeters, FM
    PHYSICAL REVIEW B, 2002, 66 (02):
  • [27] Fractional traveling wave solutions of the (2+1)-dimensional fractional complex Ginzburg-Landau equation via two methods
    Lu, Peng-Hong
    Wang, Ben-Hai
    Dai, Chao-Qing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (15) : 8518 - 8526
  • [28] Generalized Ginzburg-Landau equation and the properties of superconductors with Ginzburg-Landau parameter κ close to 1
    Yu. N. Ovchinnikov
    Journal of Experimental and Theoretical Physics, 1999, 88 : 398 - 405
  • [29] Attractors of Modified Coupled Ginzburg-Landau Model
    Chen S.
    Liu S.
    Mathematical Problems in Engineering, 2023, 2023
  • [30] Generalized Ginzburg-Landau equation and the properties of superconductors with Ginzburg-Landau parameter κ close to 1
    Ovchinnikov, YN
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (02) : 398 - 405