Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system

被引:49
|
作者
Wang, Li-Li [1 ,2 ]
Liu, Wen-Jun [1 ,2 ,3 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
soliton; modified Hirota bilinear method; Ginzburg-Landau equation; bright soliton solution; NONLINEAR SCHRODINGER-EQUATION; DISPERSIVE DIELECTRIC FIBERS; OPTICAL SOLITON; TRANSMISSION; DYNAMICS; PULSES; MODEL;
D O I
10.1088/1674-1056/ab90ea
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A coupled (2 + 1)-dimensional variable coefficient Ginzburg-Landau equation is studied. By virtue of the modified Hirota bilinear method, the bright one-soliton solution of the equation is derived. Some phenomena of soliton propagation are analyzed by setting different dispersion terms. The influences of the corresponding parameters on the solitons are also discussed. The results can enrich the soliton theory, and may be helpful in the manufacture of optical devices.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Stable soliton propagation in a coupled(2+1) dimensional Ginzburg–Landau system
    王丽丽
    刘文军
    Chinese Physics B, 2020, 29 (07) : 313 - 316
  • [2] New exact solutions of the (2+1)-dimensional ginzburg-landau equation
    Shi, Ye-Qiong
    Mathematical and Computational Applications, 2013, 18 (02) : 103 - 111
  • [3] Stable spatiotemporal dissipative soliton clusters in the complex Ginzburg-Landau equation
    Zhu, Wei-Ling
    Luo, Li
    Yan, Jun-Hu
    He, Ying-Ji
    JOURNAL OF MODERN OPTICS, 2009, 56 (17) : 1824 - 1828
  • [4] Dynamics of the (2+1)-dimensional coupled cubic-quintic complex Ginzburg-Landau model for convecting binary fluid: Analytical investigations and multiple-soliton solutions
    Selima, Ehab S.
    Abu-Nab, Ahmed K.
    Morad, Adel M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023,
  • [5] ELIMINATION OF HYSTERESIS IN A SYSTEM OF COUPLED GINZBURG-LANDAU EQUATIONS
    SULLIVAN, TS
    DEISSLER, RJ
    PHYSICAL REVIEW A, 1989, 40 (11): : 6748 - 6751
  • [6] Soliton turbulence in the complex Ginzburg-Landau equation
    Sakaguchi, Hidetsugu
    PHYSICAL REVIEW E, 2007, 76 (01):
  • [7] Soliton Solutions of the Complex Ginzburg-Landau Equation
    Rasheed, Faisal Salah Yousif
    Aziz, Zainal Abdul
    MATEMATIKA, 2009, 25 (01) : 39 - 51
  • [8] On the shape of Meissner solutions to the 2-dimensional Ginzburg-Landau system
    Pan, Xing-Bin
    Xiang, Xingfei
    MATHEMATISCHE ANNALEN, 2023, 387 (1-2) : 541 - 613
  • [9] 2+1维Ginzburg-Landau方程的精确波解
    施业琼
    数学的实践与认识, 2009, 39 (16) : 247 - 251
  • [10] Exact stable pulses in asymmetric linearly coupled Ginzburg-Landau equations
    Atai, J
    Malomed, BA
    PHYSICS LETTERS A, 1998, 246 (05) : 412 - 422