Structure and dynamics of Titan's outer icy shell constrained from Cassini data

被引:38
|
作者
Lefevre, Axel [1 ]
Tobie, Gabriel [1 ]
Choblet, Gael [1 ]
Cadek, Ondrej [2 ]
机构
[1] Univ Nantes, CNRS, Lab Planetol & Geodynam, UMR 6112, F-44322 Nantes, France
[2] Charles Univ Prague, Fac Math & Phys, Dept Geophys, CR-18000 Prague 8, Czech Republic
基金
欧洲研究理事会;
关键词
Titan; Interiors; Satellites; shapes; INTERNAL STRUCTURE; CONVECTION; TOPOGRAPHY; SHAPE; DEFORMATION; ORIGIN;
D O I
10.1016/j.icarus.2014.04.006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Cassini-Huygens mission has brought evidence for an internal ocean lying beneath an outer icy shell on Titan. The observed topography differs significantly from the reference hydrostatic shape, while the measured geoid anomalies (estimated up to degree three) remain weak. This suggests compensation either by deflections of the ocean/ice interface or by density variations in an upper crust. However, the observed degree-three gravity signal indicates either that the topography is not perfectly compensated, or that mass anomalies exist in the deep interior, or a combination of both. To investigate the compensation mechanisms, we developed an interior structure model satisfying simultaneously the surface gravity and long-wavelength topography. We quantified the excess deflection of ocean/ice I interface, the density anomalies in the upper crust, or the deflection of the ice/rock interface needed to explain the observed degree-three anomalies. Finally, we tested the long-term mechanical stability of the internal mass anomalies by computing the relaxation rate of each internal interface in response to interface mass load. We showed that the computed deflection of the ocean/ice I interface is stable only for a conductive highly viscous layer above a relatively cold ocean (T < 250 K). Solutions with a moderately convecting ice shell are possible only for models with crustal density variations. Due to fast relaxation, the high pressure ice layer cannot be the source of the degree three geoid anomalies. The existence of mass anomalies in the rocky core remains a possible explanation. Estimation of the degree-four gravity signal by future, Cassini flybys will further constrain the compensation, mechanism and the source of gravity anomalies. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:16 / 28
页数:13
相关论文
共 50 条
  • [11] Energetics of Titan's ionosphere: Model comparisons with Cassini data
    Richard, M. S.
    Cravens, T. E.
    Robertson, I. P.
    Waite, J. H.
    Wahlund, J. -E.
    Crary, F. J.
    Coates, A. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
  • [12] Titan's gravity field and interior structure after Cassini
    Durante, Daniele
    Hemingway, D. J.
    Racioppa, P.
    Iess, L.
    Stevenson, D. J.
    ICARUS, 2019, 326 : 123 - 132
  • [13] Composition of Titan's surface from Cassini VIMS
    McCord, T. B.
    Hansen, G. B.
    Buratti, B. J.
    Clark, R. N.
    Cruikshank, D. P.
    D'Aversa, E.
    Griffith, C. A.
    Baines, Ex. H.
    Brown, R. H.
    Ore, C. M. Dalle
    Filacchione, G.
    Formisano, V.
    Hibbitts, C. A.
    Jaumann, R.
    Lunine, J. I.
    Nelson, R. M.
    Sotin, C.
    PLANETARY AND SPACE SCIENCE, 2006, 54 (15) : 1524 - 1539
  • [14] Titan's surface from the Cassini RADAR radiometry data during SAR mode
    Paganelli, F.
    Janssen, M. A.
    Lopes, R. M.
    Stofan, E.
    Wall, S. D.
    Lorenz, R. D.
    Lunine, J. I.
    Kirk, R. L.
    Roth, L.
    Elachi, C.
    PLANETARY AND SPACE SCIENCE, 2008, 56 (01) : 100 - 108
  • [15] Titan's "Average" Ionospheric Structures from Cassini
    Hsu, Jen-Kai
    Ip, Wing-Huen
    PLANETARY SCIENCE JOURNAL, 2021, 2 (04):
  • [16] Detection of currents and associated electric fields in Titan's ionosphere from Cassini data
    Agren, K.
    Andrews, D. J.
    Buchert, S. C.
    Coates, A. J.
    Cowley, S. W. H.
    Dougherty, M. K.
    Edberg, N. J. T.
    Garnier, P.
    Lewis, G. R.
    Modolo, R.
    Opgenoorth, H.
    Provan, G.
    Rosenqvist, L.
    Talboys, D. L.
    Wahlund, J. -E.
    Wellbrock, A.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
  • [17] Potential vorticity structure of Titan's polar vortices from Cassini CIRS observations
    Sharkey, Jason
    Teanby, Nicholas A.
    Sylvestre, Melody
    Mitchell, Dann M.
    Seviour, William J. M.
    Nixon, Conor A.
    Irwin, Patrick G. J.
    ICARUS, 2021, 354
  • [18] Titan's surface and atmosphere from Cassini/VIMS data with updated methane opacity
    Hirtzig, M.
    Bezard, B.
    Lellouch, E.
    Coustenis, A.
    de Bergh, C.
    Drossart, P.
    Campargue, A.
    Boudon, V.
    Tyuterev, V.
    Rannou, P.
    Cours, T.
    Kassi, S.
    Nikitin, A.
    Mondelain, D.
    Rodriguez, S.
    Le Mouelic, S.
    ICARUS, 2013, 226 (01) : 470 - 486
  • [19] Dynamics of Saturn's magnetodisk near Titan's orbit: Comparison of Cassini magnetometer observations from real and virtual Titan flybys
    Simon, Sven
    Wennmacher, Alexandre
    Neubauer, Fritz M.
    Bertucci, Cesar L.
    Kriegel, Hendrik
    Russell, Christopher T.
    Dougherty, Michele K.
    PLANETARY AND SPACE SCIENCE, 2010, 58 (12) : 1625 - 1635
  • [20] Determining Titan surface topography from Cassini SAR data
    Stiles, Bryan W.
    Hensley, Scott
    Gim, Yonggyu
    Bates, David M.
    Kirk, Randolph L.
    Hayes, Alex
    Radebaugh, Jani
    Lorenz, Ralph D.
    Mitchell, Karl L.
    Callahan, Philip S.
    Zebker, Howard
    Johnson, William T. K.
    Wall, Stephen D.
    Lunine, Jonathan I.
    Wood, Charles A.
    Janssen, Michael
    Pelletier, Frederic
    West, Richard D.
    Veeramacheneni, Chandini
    ICARUS, 2009, 202 (02) : 584 - 598