Dissociation of liquid water on defective rutile TiO2 (110) surfaces using ab initio molecular dynamics simulations

被引:14
|
作者
Wang, Hui-Li [1 ,3 ]
Hu, Zhen-Peng [1 ]
Li, Hui [2 ]
机构
[1] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China
[2] Beijing Univ Chem Technol, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing 100029, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
ab initio molecular dynamics; rutile (110); free energy barrier; spontaneous reaction; exothermic reaction; TIO2(110); ADSORPTION; SCIENCE; H2O;
D O I
10.1007/s11467-018-0763-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In order to obtain a comprehensive understanding of both thermodynamics and kinetics of water dissociation on TiO2, the reactions between liquid water and perfect and defective rutile TiO2 (110) surfaces were investigated using ab initio molecular dynamics simulations. The results showed that the free-energy barrier (similar to 4.4 kcal/mol) is too high for a spontaneous dissociation of water on the perfect rutile (110) surface at a low temperature. The most stable oxygen vacancy (Vo(1)) on the rutile (110) surface cannot promote the dissociation of water, while other unstable oxygen vacancies can significantly enhance the water dissociation rate. This is opposite to the general understanding that Vo(1) defects are active sites for water dissociation. Furthermore, we reveal that water dissociation is an exothermic reaction, which demonstrates that the dissociated state of the adsorbed water is thermodynamically favorable for both perfect and defective rutile (110) surfaces. The dissociation adsorption of water can also increase the hydrophilicity of TiO2.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Energy of Step Defects on the TiO2 Rutile (110) Surface: An ab initio DFT Methodology
    Hardcastle, Trevor P.
    Seabourne, Che R.
    Brydson, Rik M. D.
    Livi, Ken J. T.
    Scott, Andrew J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (45): : 23766 - 23780
  • [32] Ab initio study of the electronic and magnetic structure of the TiO2 rutile (110)/Fe interface
    Gruenebohm, Anna
    Entel, Peter
    Herper, Heike C.
    PHYSICAL REVIEW B, 2013, 88 (15)
  • [33] Dynamical and structural properties of adsorbed water molecules at the TiO2 rutile-(110) surface: interfacial hydrogen bonding probed by ab-initio molecular dynamics
    Margineda, Joan
    English, Niall J.
    MOLECULAR PHYSICS, 2020, 118 (9-10) : 9 - 10
  • [34] First-principles molecular dynamics simulation of water dissociation on TiO2(110)
    Lindan, PJD
    Harrison, NM
    Holender, JM
    Gillan, MJ
    CHEMICAL PHYSICS LETTERS, 1996, 261 (03) : 246 - 252
  • [35] Water chain formation on rutile TiO2 (110) nanocrystal: A molecular dynamics simulation approach
    Foroutan, Masumeh
    Darvishi, Mehdi
    Fatemi, S. Mahmood
    Babazadeh, Hamideh K.
    JOURNAL OF MOLECULAR LIQUIDS, 2018, 250 : 344 - 352
  • [36] Resolving the odd-even oscillation of water dissociation at rutile TiO2(110)-water interface by machine learning accelerated molecular dynamics
    Zhuang, Yong-Bin
    Bi, Rui-Hao
    Cheng, Jun
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (16):
  • [37] Ab initio studies of H2O adsorption on the TiO2(110) rutile surface
    Vogtenhuber, D
    Podloucky, R
    Redinger, J
    SURFACE SCIENCE, 1998, 402 (1-3) : 798 - 801
  • [38] Diffusion and reaction pathways of water near fully hydrated TiO2 surfaces from ab initio molecular dynamics
    Agosta, Lorenzo
    Brandt, Erik G.
    Lyubartsev, Alexander P.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (02):
  • [39] Nanoindentation and nanoscratching of rutile and anatase TiO2 studied using molecular dynamics simulations
    Gheewala, I.
    Smith, R.
    Kenny, S. D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (35)
  • [40] Reactivity of the Defective Rutile TiO2 (110) Surfaces with Two Bridging-Oxygen Vacancies: Water Molecule as a Probe
    Shi, Hui
    Liu, Ying-Chun
    Zhao, Zhi-Jian
    Miao, Meng
    Wu, Tao
    Wang, Qi
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (35): : 20257 - 20263