Polynomial solutions of a nonlinear difference equation

被引:0
|
作者
Behloul, Djilali [1 ]
Cheng, Sui Sun [2 ]
机构
[1] USTHB, Dept Comp Sci, Algiers 16111, Algeria
[2] Hua Univ, Dept Math, Hsinchu 30043, Taiwan
关键词
Functional equation; Difference equation; Polynomial solution; Rational solution;
D O I
10.1007/s11075-013-9707-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of nonlinear difference equations is considered. We show how their polynomial solutions can be computed in a systematic manner.
引用
收藏
页码:325 / 337
页数:13
相关论文
共 50 条
  • [21] Representation of solutions of a solvable nonlinear difference equation of second order
    Stevic, Stevo
    Iricanin, Bratislav
    Kosmala, Witold
    Smarda, Zdenek
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (95) : 1 - 18
  • [22] Explicit polynomial solutions to the q-difference form of the Harper-equation
    Micu, C
    Papp, E
    MODERN PHYSICS LETTERS B, 1997, 11 (18): : 773 - 778
  • [23] On existence of meromorphic solutions for nonlinear q-difference equation
    Peng, Changwen
    Huang, Huawei
    Tao, Lei
    SCIENCEASIA, 2023, 49 (03): : 369 - 376
  • [24] Asymptotic behavior of solutions of a nonlinear difference equation with continuous argument
    Stević S.
    Ukrainian Mathematical Journal, 2004, 56 (8) : 1300 - 1307
  • [25] ON THE EXISTENCE OF POSITIVE SOLUTIONS OF A NONLINEAR q-DIFFERENCE EQUATION
    Hassan, H. A.
    El-Shahed, Moustafa
    Mansour, Z. S.
    FIXED POINT THEORY, 2012, 13 (02): : 517 - 526
  • [26] Some Properties and Expressions of Solutions for a Class of Nonlinear Difference Equation
    Elabbasy, E. M.
    El-Metwally, H.
    Elsayed, E. M.
    UTILITAS MATHEMATICA, 2012, 87 : 93 - 110
  • [27] Non-@polynomial solutions to the q-@difference form of the Harper equation
    Micu, C.
    Papp, E.
    Journal of Physics A: Mathematical and General, 31 (12):
  • [28] Non-polynomial solutions to the q-difference form of the Harper equation
    Micu, C
    Papp, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (12): : 2881 - 2887
  • [29] On the asymptotic behavior of solutions of a nonlinear difference-differential equation
    Wang, XP
    Liao, LS
    APPLIED MATHEMATICS LETTERS, 2005, 18 (03) : 267 - 272
  • [30] Infinitely many solutions for a nonlinear difference equation with oscillatory nonlinearity
    Mălin M.
    Rădulescu V.D.
    Ricerche di Matematica, 2016, 65 (1) : 193 - 208